(This paper was rapporteured in lecture EX4/1)
M. Ono , S. Kaye , M. Peng , G. Barnes ,
W. Blanchard , M. Carter 1, J. Chrzanowski ,
L. Dudek , R. Ewig 2, D. Gates , R. Hatcher ,
R. Majeski , T. Jarboe 2, S. Jardin , D. Johnson ,
M. Kalish , R. Kaita , C. Kessel , H. Kugel ,
B. McCormack , R. Maingi 1, J. Manickam ,
J. Menard , D. Mueller , B. Nelson 1,
B. Nelson 2, C. Neumeyer , G. Oliaro ,
F. Paolletti 3, R. Parsells , E. Perry ,
N. Pomphrey , S. Ramakrishnan , R. Raman 2,
G. Rewoldt , J. Robinson , A. L. Roquemore ,
P. Ryan 1, S. Sabbagh 2, D. Swain 1,
E. J. Synakowski , M. Viola , M. Williams , J. R. Wilson , and
the NSTX Team
Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA
1 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
2 University of Washington, Seattle, Washington, USA
3 Columbia University, New York, N.Y., USA
Abstract
The National Spherical Torus Experiment (NSTX ) is being built at PPPL
to test the fusion physics principles for the ST concept at the MA level. The
NSTX nominal plasma parameters are
, ,
,
,
,
,
elongation
, triangularity
, and
plasma pulse length of up to 5 sec. The plasma heating / current drive (CD)
tools are High Harmonic Fast Wave (HHFW) (6 MW, 5 sec), Neutral Beam Injection
(NBI) (5 MW, 80 keV, 5 sec), and Coaxial Helicity Injection (CHI). Theoretical
calculations predict that NSTX should provide exciting possibilities for
exploring a number of important new physics regimes including very high plasma
beta, naturally high plasma elongation, high bootstrap current fraction,
absolute magnetic well, and high pressure driven sheared flow. In addition,
the NSTX program plans to explore fully non- inductive plasma start-up as well
as a dispersive scrape-off layer for heat and particle flux handling.
IAEA 1999