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Abstract

We study experimentally and theoretically a new regime of the sliding-mode prop-

agation of microwave radiation in plasma waveguides in atmospheric air. We show

that a plasma waveguide of large radius (much larger than the wavelength of the

signal) can be developed in the photoionization of air molecules by the KrF-laser

emission. We demonstrate the transfer of a 38 GHz microwave signal to a distance of

up to 60 m. The mechanism of the transfer is determined by total internal reflection

of the signal on the optically less dense walls of the waveguide. We perform the cal-

culations for waveguides of various radii and microwave radiation wavelengths and

show that the propagation increases with decrease of the wavelengths and reaches

several kilometers for submillimeter waves.

1.Introduction

The properties of plasma waveguides have been studied in a large number of works
during the recent decades because this problem is closely related to issues of acceleration
of charged particles in plasma, amplification and generation of microwave radiation, its
transfer, microwave heating, and diagnostics of plasma, diffraction on plasma formation,
and a range of other problems [1]. Transfer of electromagnetic (microwave and radiofre-
quency) radiation pulses in atmospheric air using the laser plasma as a guiding structure
has been proposed in [2, 3], and the waveguide properties of the laser spark have been
experimentally demonstrated in [4–6].

The development of plasma structures up to several tens and hundreds of meters long
became possible with the discovery of the effect of filamentation of high-power ultrashort
laser pulses [7–9]. In the process of filamentation, when a laser pulse propagates in
atmospheric-pressure gases, a trace is formed in the shape of a thin plasma filament
≤100 µm in diameter, electron density 1015−1017 cm−3, and several hundred meters long.
From the viewpoint of a number of applications, it appears interesting to use such plasma
formations controlled by their geometry and characteristics (density profile, etc.) for tasks
involving electromagnetic-radiation transfer. The propagation of 3D modes of microwave
radiation in hollow plasma waveguides, whose walls are formed by these filaments, was
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theoretically investigated in [10]. The optimum choice of the plasma waveguide radius
was found to be of the order of the wavelength of the signal, R ∼ λ.

The transfer regime is provided by the high conductance of the plasma in the channel;
thus, the physical mechanism is quite similar to the traditional case of waveguides with
metal walls. The conductance of plasma, however, is several orders of magnitude lower
than that of metal and, as a result, the signal propagates only to an insignificant distance.
In [11] the experiment was performed in a waveguide ∼4.5 cm in diameter, formed by
multiple filaments, to demonstrate the transfer of a 10 GHz microwave signal to a distance
of ∼16 cm. Numerical calculations show [12] that some increase in the transfer length
can be achieved in structures formed by orderly arranged plasma filaments of the type of
photonic crystals.

In this work, we investigate experimentally and theoretically an alternative mechanism
of the sliding-mode propagation of microwave radiation inside a hollow plasma channel of
large radius R ≫ λ, which makes it possible to increase significantly the signal transfer
length. Such a possibility with the use of a tubular UV laser beam was first indicated
in [3], and its realization using a KrF laser was reported in [13]. Physically, this mechanism
is based on the effect of total reflection at the interface with an optically less dense
medium. For waveguides of a sufficiently large radius, lower modes become “sliding” —
the transverse wavenumber is significantly (∼λ/R times) smaller than the longitudinal
wavenumber, and the effective angle of incidence on the reflection surface exceeds the
critical angle determined by the ratio of the refractive indices of air and plasma. With
this approach, high conductance of the plasma is not required, which makes it possible to
be restricted to a low degree of air ionization, with plasma density of 1011–1014 cm−3.

We should emphasize the difference between plasma waveguides used in our work and
large-radius dielectric waveguides [14, 15]. Those waveguides are, in particular, capillary
tubes with dielectric walls; high-power laser radiation propagating in the waveguides
ionizes the gas filling the capillary tube and forming the plasma wave for acceleration
of electrons [16–18]. The mode analysis in such a structure is presented in [15]. In such
dielectric waveguides, reflection occurs at the boundary of the wall with larger permittivity
than inside the capillary, and the losses emerge owing to the leakage of radiation through
the capillary wall. In contrast, in plasma waveguides, there exists total internal reflection
from the optically less dense walls, and the modes are attenuated owing to the conductance
of the plasma.

In this paper, we develop the approach of [19, 20] and give a detailed description of
the experiments on efficient channeling and transfer of the sliding mode of a microwave
signal in large-radius plasma waveguides formed as a result of the photoionization of
atmospheric air molecules in the field of a KrF excimer laser (Sec. 2). In Sec. 3, we study
the propagation of the sliding modes in plasma waveguides and present the results of
numerical and analytical investigation of the roots of the dispersion equations describing
the propagation of the lowest sliding axial-symmetric modes E01 and H01 of a plasma
cylindrical waveguide (Sec. 3.2), as well as of the hybrid mode EH11 (Sec. 3.3). Finally, in
Sec. 3.4 we investigate the effect of wall thickness of plasma waveguides on the attenuation
increment by the example of the axial-symmetric mode E01, for which we deduce and
numerically investigate the corresponding dispersion relation where the wall thickness is
taken into account.
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2. Experimental Realization of Sliding Modes in Plasma Waveguides

Figure 1: Various setups of experiments on the
microwave radiation propagation in plasma waveg-
uides.

Below, we present the results of
the first experiments on the efficient
channeling and transfer of the slid-
ing mode of a microwave signal in a
plasma waveguide of a comparatively
large radius R ≈ 5 cm formed in at-
mospheric air by the radiation of a
GARPUN KrF excimer laser [21]. In
the unstable-resonator injection con-
trol regime, the laser generated pulses
of ∼70 ns at the half-height, an en-
ergy of ∼50 J, and radiation diver-
gence ∼10−4 rad. To obtain a paral-
lel, convergent or divergent “tubular”
beam, we used various optical setups
(Fig. 1).

In setup (a), the central part 100–
120 mm in diameter was shut in the
initial laser beam 180×160 mm in
transverse size by means of a round
closure. Herewith, the average radi-
ation intensity (in the beam cross section) did not exceed I = 2 · 106 W/cm2, and the
photoelectron density in air was, according to the plasma conductance measurements [19],
ne ∼ 2 · 108 cm−3. To increase the electron density by three orders of magnitude, readily
ionized hydrocarbon vapors were added to atmospheric air.

Figure 2: Laser-beam prints on a photo paper after
a two-lens telescope (left) and a two-axicon tele-
scope (right).

In setup (b), the initial beam was
compressed by a two-lens telescope
(Fig. 2a) and, with the use of two
axicons (conical lenses), was trans-
formed without energy losses into a
tubular beam 120 mm in outer di-
ameter and 10 mm “wall” thickness
(Fig. 2b). The minor part of energy
(in experiments on the propagation
of microwave radiation it was blocked
by the emitter) was concentrated in
the center due to the parasitic reflec-
tion from the optical surfaces without
antireflection coating. In this setup,
the average radiation intensity in the
ring was I = 107 W/cm2, the elec-
tron density increased in air up to ne ∼ 109 cm−3 and, correspondingly, upon the addition
of hydrocarbons, up to ne ∼ 1012 cm−3. Due to a small difference in the refractive angles,
the tubular beam in these experiments was convergent: its diameter decreased two times
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at a distance of about 15 m along the axis.
In setup (c), we used one axicon, and the tubular beam converged with an angle of

2.4◦.
In setup (d), use was made of a combination of an axicon and a lens, which decreased

the convergence angle of the tubular beam down to ∼1◦.

Figure 3: Signals from the microwave receiver (upper
beam) and laser pulse (lower beam): upper (a and b) for
the setup in Fig. 1a and lower (c and d) for the setup in
Fig. 2d. The distance to the receiver L = 12 m.

As a source of microwave
radiation, we used a pulsed
magnetron with a peak out-
put power of 20 kW at
a frequency of 35.3 GHz
(wavelength, 8.5 mm). The
microwave source, equipped
with a conical horn transmit-
ter antenna 25 mm in diam-
eter, had a total angle of ra-
diation convergence of about
30◦. The microwave radia-
tion receiver with the same
horn was positioned at var-
ious distances L from the
emitter. In pure air, no no-
ticeable change of the mi-
crowave signal was observed
in the presence of a tubular
laser beam in either of the
schemes studied. The reason
for this was the insufficient

photoelectron density responsible for the formation of a virtual plasma waveguide. Upon
addition of hydrocarbon vapors along the propagation route, we observed the interaction
of the microwave radiation with the photoionized plasma of the waveguide. Character-
istic signals from the receiver and a synchronized laser pulse are shown in Fig. 3. The
oscillograms on the left-hand side correspond to the case where the laser beam was closed
by the screen.

Depending on the scheme of the experiments and the laser radiation intensity (re-
spectively, the electron density in the waveguide wall), we observed that during the laser
pulse the microwave signal either was absorbed in setup (a) (see Fig. 3a) or increased in
setups (c) and (d) (see Fig. 3b). The largest increase in the microwave-signal amplitude,
up to 6 times, was observed in setup (d) at a distance L = 60 m from the laser to the re-
ceiver. In setup (b) where the tubular laser beam converged, the microwave signal almost
did not change.

The mechanism of microwave radiation channeling in a weakly ionized plasma waveg-
uide is related to the reflection of radiation from the electron-density gradient at the
plasma–air interface. This effect is similar to total internal reflection of optical radiation
in optical fibers, but differs by the occurrence of microwave radiation in the waveguide
plasma. The sign of the effect (amplification or absorption of microwave radiation) is
determined by the balance of these two factors. Thus, absorption predominates at low
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laser intensities and electron densities in setup (a). At higher laser intensities in setups (c)
and (d), the microwave radiation is amplified due to its channeling.

Figure 4: Schematic view of the microwave-
radiation propagation in a cylindrical (left) and
conical (right) plasma waveguide.

A qualitative condition for the
microwave-radiation channeling in
a geometric approximation (strictly
speaking, true when the waveguide
diameter D ≫ λmicrowave) is the con-
dition that the diffraction angle of
convergence of microwave radiation
βmicrowave ≈ λmicrowave/D is smaller
than the angle of total internal re-
flection Θ determined by the relation
cosΘ = n, where n is the refractive
index of ionized gas with respect to
air (Fig. 4a). For small sliding angles,
the expression for Θ is transformed to
the form Θ2 ≈ Ω2

p/(ω
2 + ν2

T ), where

Ωp =
√

4πnee2/me is the plasma fre-
quency and νT is the characteristic
transfer frequency of electron colli-
sions.

Figure 5: Diffraction angle and angles
of total internal reflection from the
plasma–air interface vs the microwave
radiation wavelength. Microwave-
radiation diffraction angle (1), hydro-
carbons added (2), and atmospheric
air (3).

Figure 5 presents the values of the diffrac-
tion angle and total internal reflection angles for
pure air and volatile hydrocarbon vapors versus
the microwave radiation wavelength. It is seen
that for λ = 8 mm (shown by the vertical line)
βmicrowave > Θ, and radiation channeling is im-
possible. With the addition of a hydrocarbon, the
diffraction angle βmicrowave is already slightly larger
than the angle of total internal reflection Θ. Ow-
ing to this, the microwave radiation channeling in
a convergent waveguide [setup (b) in Fig. 1], if
it takes place, is compensated by the radiation
absorption in the plasma-waveguide walls. In a
slightly divergent conical plasma waveguide, the
condition of channeling is easier to satisfy; in this
case, it acquires the form βmicrowave − α < Θ (see
Fig. 4b). As a consequence, in experiments staged
in setups (c) and (d) (Fig. 1) we observe amplifi-
cation of the microwave signal.

The interaction length of microwave radiation and plasma in a weakly converging
waveguide was assessed experimentally by closing the laser beam with a dielectric screen
at various distances from the microwave source; the interaction length was found to be
about 10 m.
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3. Theory of the Sliding-Mode Propagation in Plasma Waveguides

3.1 Dielectric Properties of Weakly Ionized Atmospheric Air Plasma

For theoretical consideration of the realized sliding mode of the microwave radiation
propagation in plasma waveguides, we make use of a simplest model.

We assume a plasma waveguide to be an air cylinder of radius R, bounded by a
plasma layer whose thickness significantly exceeds the field-penetration depth. We con-
sider modes of a round waveguide of constant radius R ≫ λ; the density of the plasma
is assumed to be homogeneous in cross section and along the propagation length, which
is a good approximation under the conditions of our experiment. The diffuse spreading
of the waveguide walls is assumed to be small (in comparison with the microwave-signal
wavelength) during the pulse action.

The permittivity of a weakly ionized air plasma in the microwave electromagnetic-wave
field is approximated by the relation [22]

εp = εair −
Ω2

p

ω(ω + iνT )
. (1)

The permittivity of atmospheric air for the centimeter–submillimeter wavelengths is εair−
1 ∼ 10−4 [22], so this difference can be neglected, assuming εair = 1.

In the experiments under consideration, plasma is formed as a result of direct or
stepwise multiphoton ionization of air molecules in the radiation field of a KrF laser
(λL = 248 nm and ~ωL ≈ 5 eV). The average energy defect in the photoionization of
air molecules is ∼1 eV, and, since the electronic component of the plasma is rapidly
thermalized (of the order of the electron–electron collision time), it can be assumed that
in our problem the characteristic electron temperature Te is within the range of 0.03–1 eV.
An estimate of the effective transfer frequency of collisions of electrons with air molecules
at atmospheric pressure is νT ∼ 1012 s−1 [22–24].

With increase in the extent of ionization, the electron–ion collisions begin to play
a significant role. The effective frequencies of the electron–electron and electron–ion
collisions are assessed by the following relations [22, 25]:

νee[s
−1] =

3.7ne[cm
−3]

T
3/2
e [K]

ln Λ, νei ≈
νee√
2
, (2)

where the Coulomb logarithm lnΛ = 7.47 + 3/2 log T [K] − 1/2 log ne [cm−3]. It is easy
to see that, under the considered conditions, the electron–ion collisions are insignificant
from the viewpoint of the dielectric properties of the plasma within the density range
ne ≤ 1015 − 1016 cm−3.

Thus, within the centimeter–submillimeter wavelength range, extended plasma waveg-
uides of the sliding modes in atmospheric air are characterized by the permittivity, for
which the following relation of the real and imaginary parts is fulfilled:

Re (1− εp) =
ξ

1 + ω2/nu2
T

≪ Im (1− εp) =
ξ

1 + ω2/ν2
T

νT
Ω
. (3)
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Here, ξ = Ω2
p/ν

2
T ≈ 3.19·10−3 ·(ne/1012 cm−3) at the plasma density ne ≤ 1015 cm−3. This

particular feature, as we discussed above, distinguishes plasma waveguides from dielectric
waveguides [14, 15].

In the considered waveguides with R ≫ λ, the conditions of internal reflection are,
obviously, fulfilled more easily at a smaller characteristic angle of the sliding mode (i.e.,
the closer the angle of “incidence” on the waveguide wall to π/2); due to this fact, we
choose as operating modes the lowest axial-symmetric transverse magnetic (TM) (E0n)
and transverse electric (TE) (H0n) modes, as well as the EH11 mode, which is known to
be the main operating mode in dielectric waveguides [14].

3.2 Propagation of Axial-Symmetric Sliding Modes

First, we consider the axial-symmetric modes E0n and H0n.
The transverse distribution of the electromagnetic-field longitudinal components (Ez

for TM and Hz for TE modes) has the form ∼ J0(κ1r) exp[i(hz−ωt)] inside the waveguide

and∼ H
(1)
0 (κ2r) exp[i(hz−ωt)] in the plasma of the walls, where r and z are the transverse

and longitudinal coordinates (the cylindrical coordinate system is used). Correspondingly,
the electromagnetic field of the TM mode E0n contains three components (Ez, Er, Hφ),
which inside the cylinder (air, r < R) have the form [14,26]

Ez = E0J0(κ1r), Er = −i
h

κ1

E0J1(κ1r), Hφ = −i
k0
κ1

E0J1(κ1r) (4)

and in ambient plasma, r > R,

Ez = CH
(1)
0 (κ2r), Er = −i

h

κ2

CH
(1)
1 (κ2r), Hφ = −i

εpk0
κ1

CH
(1)
1 (κ2r). (5)

For the orthogonal mode H0n, the field is represented by the components Hz, Hr, Eφ

and has the form

Hz = H0J0(κ1r), Hr = −i
h

κ1

H0J1(κ1r), Eφ = i
k0
κ1

H0J1(κ1r) (6)

in air and

Hz = C ′H
(1)
0 (κ2r), Hr = −i

h

κ2

C ′H
(1)
1 (κ2r), Eφ = i

k0
κ1

C ′H
(1)
1 (κ2r) (7)

in the plasma. Here, the functions Jn(x) and H
(1)
n (x) are Bessel functions and Hankel

functions of the first kind, and E0, C and H0, C
′ are the amplitudes of the fields in air

and plasma for the TM and TE modes, respectively. The transverse wavenumbers are
determined by the dispersion correlations in air and plasma,

κ
2
1 = k2

0 − h2, κ
2
2 = εpk

2
0 − h2, (8)

where k0 = ω/c is the wavenumber in vacuum.
The boundary conditions (continuity of the tangential components at r = R) deter-

mine the amplitudes of the field in plasma, C/E0 = C ′/H0 = J0(κ1R)/H
(1)
0 (κ2R), and

the dispersion equation [26]

1

κ1R

J1(κ1R)

J0(κ1R)
=

χ

κ2R

H
(1)
1 (κ2R)

H
(1)
0 (κ2R)

, (9)

where χ = εp stands for the TM axial-symmetric modes, and χ = 1 for the TE modes.
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Figure 6: Dependence of the characteristic
attenuation length (Imh)−1 of lower axial-
symmetric sliding modes of microwave ra-
diation on its wavelength at plasma density
ne = 1012 cm−3 and waveguide radius R =
5 cm (a), 10 cm (b), and 30 cm (c). The
lower branches of the curves correspond to
E01 modes, and the upper branches to H01

modes.

Since R/λ ≫ 1, dispersion equations (9)
have, generally speaking, a number of roots
corresponding to various transverse axial-
symmetric modes. The greatest propagation
length corresponds, apparently, to the mini-
mum value of the transverse wavenumber κ1,
i.e., to the lowest transverse mode.

Figure 6 presents the characteristic prop-
agation length (Imh)−1 of the sliding axial-
symmetric modes (E01 and H01) of a plasma
waveguide versus the signal wavelength
within the centimeter–submillimeter wave
range. The calculations were carried out
at the plasma density ne = 1012 cm−3 for
various values of the waveguide radius R =
5, 10, 30 cm; the characteristic transfer fre-
quency was taken to be νT = 1012 s−1. Under
these conditions, |εp−1| ≪ 1 and the results
for the TE and TM modes practically coin-
cide; some discrepancy begins only at wave-
lengths λ ≥ 1 cm.

Figure 7: Characteristic threshold values
[relation (10)] of the waveguide radius ver-
sus the density of wall plasma for mi-
crowave radiation wavelengths λ = 8 mm
(a) and λ = 3 mm (b).

For further analysis, it is convenient to
introduce the dimensionless parameter µ2 =
(Ωp/νT )

2

1 + (ω/νT )2
(k0R)2. Setting κ1R = xµ and

κ2R = yµ, we have x2−y2 = 1− iνT/ω, and
the solution of dispersion equation (9) is, in
fact, determined by two parameters, µ and
νT/ω. Numerical analysis makes it possible
to determine the threshold value of the pa-
rameter µ at which the effective propagation
of the sliding mode is possible,

µth ≈ 1. (10)

In the range of parameters µ ∼ 0.5 − 1,
absorption sharply increases, and at µ ≤ 0.5
the propagation almost vanishes — the char-
acteristic propagation length (Imh)−1 is lim-
ited to several wavelengths. In the domain
µ > µth = 1, the propagation regime is sta-

bilized. As µ2 ∝ neR
2, relation (10), in fact, determines the lower boundary of plasma

densities and waveguide radii at which the sliding propagation regime is realized. In Fig. 7,
the indicated boundary of the sliding mode is presented for microwave-signal wavelengths
λ = 8 mm and λ = 3 mm.

In the limit of large values

µ ≫ 1, νT/ω ≫ 1, (11)
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for the roots of dispersion equation (9), we succeed in obtaining simple analytical relations,
by analogy with those done for large-radius dielectric waveguides [15]. It is easy to see
that the root of the dispersion equation occurring near the point x ≈ α/µ, where α ≈ 3.83
is the first root of the Bessel function J1(α) = 0, corresponds to the sliding regime for the
lowest axial-symmetric modes E01 and H01. For this, it is necessary that

|εp| ≪ k0R
√

ξνT/ω, (12)

which indicates the smallness of the coefficient χ/κ2R ≪ 1 on the right-hand side of (9).
Indeed, then y2 = iνT/ω + x2 − 1 whence, for the characteristic transverse wavenumber
in the plasma of the waveguide wall, we obtain

κ2 =
µy

R
≈ ±(1 + i)

µ

R

√

νT
2ω

, (13)

where the plus sign should be chosen to provide the decay of the field in the plasma with
the radius, (5). In accordance with this relation, in the considered limit (11), the argument
of the Hankel functions on the right-hand side of dispersion relations (9) is large, |κ2R| ≫
1, and, making use of the corresponding asymptotic [27], we haveH

(1)
1 (µy)/H

(1)
0 (µy) ≈ −i.

The Bessel functions in the neighborhood of the given root x = α/µ+ δx, δx ≪ α/µ are
approximated as follows [27]:

J1(µx) ≈ µδx

(

1− µδx

2α

)

J0(α), J0(µx) ≈
(

1− 1

2
(µδx)2

)

J0(α) (14)

and, since y ≈ (1 + i)

√

νT
2ω

(

1− i
ω

2νT

[

α2

µ2
− 1

]

− i
α

µ

ω

νT
δx

)

, in the lowest order from

dispersion equation (9) we obtain

[

1− 2(1− i)
αχ

µ

(

ω

2νT

)3/2
]

δx ≈ −(1 + i)
χα

µ2

√

ω

2νT

[

1 + i

(

α2

µ2
− 1

)

ω

2νT

]

. (15)

Thus, as we demonstrated numerically above (see Fig. 6), for plasma with a low degree
of ionization, such that |εp − 1| ≪ 1 (i.e., ξνT/ω ≪ 1), the solutions for the E01 and H01

modes practically coincide, and for the attenuation coefficient we have

Imh ≈ α2

k2
0R

3
√

2ξνT/ω
. (16)

The characteristic propagation length increases with increase in the frequency of the
signal and plasma waveguide radius, (Imh)−1 ∝ R3ω3/2n

1/2
1 . This behavior is supported

by numerical investigation of the roots of dispersion equation (9), the results of which
are presented in Fig. 8 for the dependence of (Imh)−1 on the plasma density within
the range of 1010 − 1014 cm−3. The calculations were carried out for the wavelength
λ = 8 mm, corresponding to the experiment, at various values of plasma waveguide radii,
R = 5, 10, 30 cm.

With increase in the plasma density in the domain k0R ≫
√

ξνT/ω ≫ 1 [in this case,
condition (12) is still valid], the solutions for various modes split as shown in Fig. 8. For the
mode H01, the root of the dispersion equation remains near x ∼ α/µ, and relation (16)
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is preserved. For the mode E01, the root is gradually shifted with increase in density,
(µx−α)/α ∝

√

ξνT/ω/k0R, and for the increment of attenuation of this mode we derive

Imh ≈ α2

k2
0R

3

√

ξνT
2ω

(

1 +
1

k0R

√

ξνT
2ω

)

, (17)

Figure 8: Dependence of the characteristic
attenuation length (Imh)−1 of lower axial-
symmetric sliding modes of microwave radi-
ation with the wavelength λ = 8 mm on the
density of waveguide wall plasma at waveg-
uide radius R = 5 cm (a), 10 cm (b), and
30 cm (c). The lower branches of the curves
correspond to E01 modes, and the upper
branches to H01 modes.

i.e., its characteristic propagation length
begins to decrease with density, ∝ n

−1/2
e .

Transition to the regime of a metal
waveguide occurs with further density in-
crease and shifts to the domain

√

ξνT/ω ≫
k0R, when relation (12) ceases to be ful-
filled. In this regime of high conductance of
the walls, the coefficient on the right-hand
side of (9) becomes large, |ξ/κ2R| ≫ 1,
and, as a consequence, the root of the dis-
persion equation for the E01 mode shifts to
the value µx ≈ β ≈ 2.405 (J0(β) = 0),
which is characteristic of the E01 mode of
a metal waveguide. In accordance with
the theory of metal waveguides, the incre-
ment of attenuation of such a TM mode in-
creases with frequency, Imh ∝ √

ω, and its
minimum value is achieved near the cutoff
frequency [14]. In this range of parame-
ters, the optimum propagation conditions
are realized at R ∼ λ [10, 11].

3.3 Propagation of Axial-Asymmetric Sliding Mode EH11

The lowest axial-asymmetric mode EH11 is the main operating mode of dielectric
waveguides [14]. This is a hybrid mode, i.e., it contains all six components of the electro-
magnetic field; herewith, all longitudinal components of the electric and magnetic fields
have the form Ez, Hz ∼ J1(κ1r) inside the waveguide and Ez, Hz ∼ H

(1)
1 (κ2r) in plasma

of the walls. The dispersion equation for the mode EH11 can then be written as [26]
[(

1

κ1

J0(κ1R)

J1(κ1R)
− εp

κ2

H
(1)
0 (κ2R)

J1(κ2R)

)

−
(

1

κ2
1R

− εp
κ2

2R

)

]

×
[(

1

κ1

J0(κ1R)

J1(κ1R)
− 1

κ2

H
(1)
0 (κ2R)

J1(κ2R)

)

−
(

1

κ2
1R

− 1

κ2
2R

)

]

=

=

(

1

κ2
1R

− εp
κ2

2R

)(

1

κ2
1R

− 1

κ2
2R

)

.

(18)

By analogy with the case of axial-symmetric modes, this equation can be approx-
imately solved in the limit (11) of large values of the parameter µ ≫ 1 and transfer
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Figure 9: Dependence of the characteris-
tic attenuation length (Imh)−1 of the lower
hybrid mode EH11 of microwave radiation
on its wavelength at plasma density ne =
1012 cm−3 and waveguide radius R = 5 cm
(a), 10 cm (b), and 30 cm (c).

Figure 10: Dependence of the characteristic
attenuation length (Imh)−1 of the lower hy-
brid mode EH11 of microwave radiation with
the wavelength λ = 8 mm on the density of
waveguide wall plasma at waveguide radius
R = 5 cm (a), 10 cm (b), and 30 cm (c).

frequency νT/ω ≫ 1. It is easy to see that with condition (12) imposed, for plasma with
a low extent of ionization |vep − 1| ≪ 1, the root of dispersion equation (18) is near
µx ≈ β ≈ 2.405 (J0(β) = 0). Indeed, in this case,

1

κ2
1R

− εp
κ2
2R

≈ 1

κ2
1R

− 1

κ2
2R

, (19)

and Eq. (18) is significantly simplified,

1

κ1

J0(κ1R)

J1(κ1R)
− i

εp
κ2

≈ 1

κ1

J0(κ1R)

J1(κ1R)
− i

κ2

≈ 0. (20)

Here we made use of the asymptotics of the Hankel functions H
(1)
0 (µy)/H

(1)
1 (µy) ≈ i

at large values of the argument µy ≫ 1. Decomposing the dispersion equation in the
neighborhood of this root x = β/µ+ δx, δx ≪ β/µ, we obtain J0(µx) ≈ −J1(β)µ δx, and
for the approximate value of the root (20) we have

δx ≈ −(1 + i)
β

µ2

√

ω

2νT
. (21)

As a result, for the increment of attenuation of the EH11 mode, we obtain the relation

Imh ≈ β2

k2
0R

3
√

2ξνT/ω
, (22)

similar to (16). Thus, the characteristic propagation length of the hybrid mode EH11

exceeds the propagation length of the axial-symmetric mode (α/β)2 ≈ 2.54 times.
At the densities k0R ≫

√

ξνT/ω ≫ 1, we arrive, similarly to (17), at the estimate

Imh ≈ β2

k2
0R

3

√

ξνT
2ω

. (23)
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This result is supported by the numerical solution of dispersion equation (18) under the
condition of realizing the sliding regime. Figure 9 presents the dependences of the charac-
teristic propagation length (Imh)−1 of the hybrid mode EH11 of a plasma waveguide on
the wavelength of the centimeter–submillimeter wave signal, for parameters corresponding
to Fig. 3 for the case of axial-symmetric modes. Figure 10 presents the dependences of
(Imh)−1 on the plasma density for the corresponding wavelength λ = 8 mm at various
values of the plasma waveguide radius, R = 5, 10, 30 cm.

3.4 Effect of the Thickness of Plasma Waveguide Walls

The previous consideration was carried out in the limit of infinitely thick walls of
plasma waveguides, such that the wave practically does not escape to the external space
— the characteristic depth of field-into-plasma penetration is small in comparison with
the wall thickness d, κ2d = µyd/R ≫ 1. Nevertheless, the wall thickness apparently
significantly affects the characteristic length of the sliding mode propagation — the losses
increase in thin walls due to “outflow” (re-emission) of the sliding modes “sideways.” At
the same time, an increase in the thickness of the plasma walls of extended waveguides
implies, in fact, a significant increase in the energy consumption of the ionizing laser pulse.

Thus, from the viewpoint of optimizing the geometry of the transfer, of interest is
the study of the dependence of the attenuation length of the sliding mode of microwave
radiation on the thickness of plasma waveguide walls. In this work, we restrict ourselves
to the case of the axial-symmetric mode E01.

We consider the plasma waveguide to be a cylinder; the radius of the internal wall
of the waveguide is R1, and that of the external wall R2. The field structure of the E01

mode in the internal field of the waveguide, r < R, is determined by expressions (4), and
in the region occupied by plasma, R1 < r < R2, we have

Ez = AJ0(κ2r) + BH
(1)
0 (κ2r),

Er = − ih

κ2

[

AJ1(κ2r) + BH
(1)
1 (κ2r)

]

, (24)

Hφ = − iεpk
2
0

ωκ2

[

AJ1(κ2r) + BH
(1)
1 (κ2r)

]

and

Ez = CH
(1)
0 (κ1r), Er = −C

ih

κ1

H
(1)
1 (κ1r), Hφ = −C

ik2
0

ωκ1

H
(1)
1 (κ1r) (25)

in the ambient space, r > R2. Herewith, for the transverse wavenumbers, relations (18)
are preserved.

Making use of the boundary conditions, i.e., the continuity of the tangential com-
ponents of the field at r = R1 and r = R2, we obtain for the amplitudes of the field

12



components in plasma

A = E0
J0(κ1R1)H

(1)
1 (κ2R1)− [κ2/(εpκ1)]J1(κ1R1)H

(1)
0 (κ2R1)

J0(κ2R1)H
(1)
1 (κ2R1)− J1(κ2R1)H

(1)
0 (κ2R1)

= C
H

(1)
0 (κ1R2)H

(1)
1 (κ2R2)− [κ2/(εpκ1)]H

(1)
1 (κ1R2)H

(1)
0 (κ2R2)

J0(κ2R2)H
(1)
1 (κ2R2)− J1(κ2R2)H

(1)
0 (κ2R2)

,

(26)

B = −E0
J0(κ1R1)J1(κ2R1)− [κ2/(εpκ1)]J1(κ1R1)J0(κ2R1)

J0(κ2R1)H
(1)
1 (κ2R1)− J1(κ2R1)H

(1)
0 (κ2R1)

= −C
H

(1)
0 (κ1R2)J1(κ2R2)− [κ2/(εpκ1)]H

(1)
1 (κ1R2)J0(κ2R2)

J0(κ2R2)H
(1)
1 (κ2R2)− J1(κ2R2)H

(1)
0 (κ2R2)

.

Finally, the dispersion equation is obtained in the form

J1(κ1R1)

J0(κ1R1)
− εpκ1

κ2

H
(1)
1 (κ2R1)

H
(1)
0 (κ2R1)

=
H

(1)
0 (κ2R2)J0(κ2R1)

H
(1)
0 (κ2R1)J0(κ2R2)

[

J1(κ1R1)

J0(κ1R1)
− εpκ1

κ2

J1(κ2R1)

J0(κ2R1)

]

×
{

H
(1)
1 (κ1R2)

H
(1)
0 (κ1R2)

− εpκ1

κ2

H
(1)
1 (κ2R2)

H
(1)
0 (κ2R2)

}{

H
(1)
1 (κ1R2)

H
(1)
0 (κ1R2)

− εpκ1

κ2

J1(κ2R2)

J0(κ2R2)

}

−1

. (27)

The left-hand side of the dispersion equation coincides with dispersion equation (9) for
the sliding axial-symmetric TM mode in the limit of a thick waveguide wall.

The effect of the finite wall thickness is taken into account on the right-hand side.
This effect can be understood qualitatively by making use of the following considerations.
At sufficiently large Re z and Im z, the ratio H

(1)
1 (z)/H

(1)
0 (z) → −i, and the right-hand

side of the dispersion equation is determined mainly by the first multiplier. Due to the
asymptotic behavior of the Hankel functions [27],

H
(1)
0 (κ2R2)

H
(1)
0 (κ2R1)

∼ exp[−Imκ2(R2 −R1)]. (28)

Thus, with increase in the waveguide wall thickness, the effect of the second boundary
decreases exponentially. The result of numerical analysis of the dispersion equation is
shown in Fig. 11, where the dependence of the attenuation length of the sliding mode on
the wall thickness of the plasma waveguide for values of parameters close to the experi-
mental values is presented. The calculations were performed at wavelength λ = 8 mm for
the case of plasma density ne = 1013 cm−1 and waveguide internal radius R1 = 10 cm. The
curves correspond to the characteristic transfer frequency of collisions νT = 1012 cm−1;
herewith, the parameter µ ≈ 13.86. The calculations show that the effect of the external
boundary of the plasma waveguide is insignificant up to a relative wall thickness of ∼10%,
i.e., ∼1 cm for the given parameters. The local maxima on the curves are, obviously, of
an interference character.
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4. Conclusions

Figure 11: Dependence of the character-
istic attenuation length (Imh)−1 of the
axial-symmetric mode E01 of microwave
radiation with wavelength λ = 8 mm on
the relative plasma-waveguide-wall thick-
ness ∆R/R. The result of numerical solu-
tions of dispersion equation (27) at plasma
density ne = 1013 cm−3 and waveguide ra-
dius R = 10 cm.

To conclude, in this paper we presented
the results of a theoretical and experimental
study of the sliding mode of the microwave
radiation transfer in plasma waveguides in at-
mospheric air. The mechanism of the trans-
fer is based on the effect of total reflection
at the interface with an optically less dense
medium and does not require high conduc-
tance (density) of plasma. The transfer of a
microwave signal, λ = 8 mm, to a distance
over 60 m was experimentally demonstrated.
The results of calculations are in good agree-
ment with the experiment and convincingly
demonstrate the advantage of the sliding-
mode propagation in comparison with high-
density plasma waveguides — the power in-
puts for a waveguide to be developed prove
to be lower, and the range of microwave-
radiation directed transfer increases with de-
crease in wavelength and reaches several kilo-
meters for submillimeter waves.
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