Tsuneyuki Ozaki Institut national de la recherche scientifique (INRS), Canada

Laser Plasma as a Source of Intense, Single Attosecond Pulses via High-Order Harmonic Generation

• Y. Pertot, L. B. Elouga Bom, R. Ganeev (INRS)

 S. Haessler, P. Salières, B. Carré & the Laser Team (CEA-Saclay)

 S. Chan, S. D. Kahn, Z. Chang (Kansas State U.)

Shorter & Shorter

Attosecond phenomena: electron motion

Three-Step Model of High-Order Harmonic Generation

Attosecond pulse train by HHG

Université d'avant-garde

Diffraction patterns (spatial frequency)

The Goal

- Intense, Single Attosecond Pulses
 - Single Attosecond Pulse
 - (= Broad Bandwidth; ~ 20 eV)
 - High Intensity (> I μ J)
 - (= High Efficiency)

Reconstruction of attosecond beating by the interference of two photons transitions (RABITT)

Modified CEA RABITT SET UP

Elouga Bom et al., Opt. Exp. 19, 3677 (2011)

RABITT method for electric field reconstruction

- Case of chromium plasma

Plasma harmonics are also Attosecond pulses

Reconstructed electric field of chromium harmonic spectrum

Intense Quasi-monochromatic Harmonics from Indium Ablation

Indium

Intense but Narrow-band

Opt. Lett. 31, 1699-1701 (2006).

Université d'avant-garde

- Phys. Rev. Lett. **102**, 013903 (2009).
- Phys. Rev. A 80, 043808 (2009).

Advanced Laser Light Source

The problem of using nanoparticles is the instability of the signal

By creating plasma at the same position on the target, the harmonic signal decreases fast and disappears after 6 s

Intense and Broad-band but Unstable

Advanced Laser Light Source

Intense Harmonics from Pencil Lead

	ΑΙ	С	Ο	Si
Point A	6.0 %	30.6 %	47.0 %	16.4 %
Point B	1.6 %	69.2 %	23.8 %	5.4 %

Pertot et al., Appl. Phys. Lett. 98, 101104 (2011). INRS

Bulk Carbon Targets as a Source for Intense Harmonics

Pump: ~ 10 mJ Ti:sapphire laser

Wavelength

Elouga Bom et al., Opt. Exp. 19, 3077-3085 (2011).

Signal stability using carbon solid targets

Harmonic signal from solid targets remains constant for at least 5 minutes.

Intense, Broad-band and Stable

Why are carbon harmonics so intense?

- SEM image of carbon bulk plasma deposition on silicon substrate shows that plasma created from bulk carbon targets contains a large number of nanoparticles.
- Therefore, it seems that for HHG in bulk carbon the fs laser interacts with nanoparticles, rather than ions as for most of solid targets.

Elouga Bom et al., Opt. Exp. **19**, 3077-3085 (2011).

niversité d'avant-garde

Traditional method : generation of single atto-second pulses

Polarization gating for a single attopulse

 τ_p

Université d'avant-garde

Left Circular Pulse

P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, Opt. Lett. **19**, 1870 (1994) V. T. Platonenko and V. V. Strelkov J. Opt. Soc. Am. B **16**, 435 (1999)

Double Optical Gating

 T_g : Gating width; τ_p : pulse duration T_d : delay for polarization gating

Université d'avant-garde

Step I: Comparing Harmonics from Carbon Plasma and Argon Gas Cell

Pump: ~ 1.4 mJ (25 fs) & 0.7 mJ (8 fs) Ti:sapphire laser

Université d'avant-garde

Step 2: Generating Continuum Harmonics from Carbon Plasma

Thank You

ozaki@emt.inrs.ca

