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A.Particle acceleration in vacuum

Arbitrary travelling plane wave:

Vector potential A = e, A(§), { =z —ct, E=-0,A,B=V x A
Initial conditions: A(£(f) =0) =0, v(t =0) =0

exactly solvable problem owing to

conservation of canonical momentum p, = ymuv, + gA = 0,

and ym(v; — ¢) = const
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energy FE = mc? ll — % (i‘i) ] = mc?(1 + 1a2) a = qA

Maximum acceleration AFE = 1me?a? |, a amplitude
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Special case: Monochromatic wave A(x,t) = e, A(p)sing, ¢ = kx — wt
Energy E = mc? (1 - %&2 sin? «xp)
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Minimum angular spread tana =

LE

Lawson-Woodward (LW) theorem:
Net energy gain from smooth em. pulse 1s zero.
Troha theorem (generalization of LW):

No energy gain from plane em. wave when radiation losses 1gnored
Clarification by J. X. Wang and W. Scheid et al.
(Phys. Rev. E 65, 028501 (2002))

Simple explanation

d - @ 8 A2 O
MU, = qu, B, = Eq-mdr‘q = —VE =2{,s1n2¢
L = —ﬁ‘?éz, ponderomotive force

momentum p, = Ymuv, = ﬁmc&g(l — cos 20¢)



Oscillation center system

linear polarization:
E,s = mc*{\/1+a2/2 — 1}, Mesr = Yoes Yoe = /1 + a2 /2

circular polarization:

/ i = £}
F:I'.gf_'- — \- l I {1-'
Polarisation

circular linear

(y,z) plane (x,y) plane

CP, electron:

A points into — B direction

LP: ratio width / hight < 18% for I = *




free particle acceleration

4, = Ay(‘rﬂ sinp, ¢=kiz-d)
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St = Smea

quiver motion in
oscillation center frame
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Table 8.1. Maxyimum achievable acceleration &.. of electrons and protons 1in a
fourth cvele of a plane Ti:Sa laser pulse (row §) and corresponding quiver energy
W (row 8) mn the oscillation center frame. | laser mmtensity, a normalized wvector
potential amphtude, vy /v ratiwo of vwelocaities in feld and pulse direction, Jtree, Fos
Lorentz factors, Ax /A neceleration distance during a fourth evele Ay = 7/2 1n umts
of Ti:Sa wavelength (A = Blllnm) during a fourth cycle, x/y ratio of oscillation
amplitudes. First column for a given intensity gives the values for electrons, second
column {where histed) the values for protons.



B. Generalized ponderomotive force f,
The principle
Whenever a high-frequency motion exhibits an asymmetry

a drift motion is induced on the slow time scale.

Standard ponderomotive force
Zero frequency (= secular) force from perturbation theory:

mlihv + (vWivl =gE[xs + £] + v < B

— f, = —1meV &2 = — LV E?

Properties of £;:

e gradient force

o the same for transverse and longitudinal waves

e rotational symmetry around beam axis (r direction)
Limits of validity:

e pulse envelope at rest in lab frame

e subrelativistic intensities, |8 < 1

e oscillation center velocity |xa| = |vo|/e << 1

Circular polarization: perturbation procedure above yields f, = 0



Pictures

Asymmetry produces a drift

A free electron can neither
absorb nor emit a photon
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To be found:

relativistically correct f,
Condition: H oscillation center xg(t) for v ¢
Step 1: Go to system in which oscillation center xg =0, x’ = xg + & = €£.

Step 2: Cycle average Hamiltonian
H(p,x,t) = qp(¢’) + {m2c% + [p — qA (')]?}1/2

over invariant phase ¢ or, equivalently, proper time '

—: B, £) = mmaprc
lab frame: pp = mersy0vo, Ho = Eos(xo0,t) —|—C[Tngfff32 —I—pg]UE
f, = po=—0H,/0xy

Properties

e Ponderomotive potential ¢, = E,4(xq,t) adiabatic invariant
e valid 1n any inertial frame for all intensities

e pulse travelling at any speed, vg = xp arbitrary

e differs for E transverse from E longitudinal, example

e motion oblique to pulse axis breaks rotational symmetry, example
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Uphill acceleration
non-relativistic
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f,,=(1-Vy)(1-3Vy f,,

Electron plasma wave travelling to the right, amplitude fixed in space, electron
injected from left with V; > 0 normalized to constant phase velocity



Broken symmetry: Polarization angle dependence

Assume standing wave A =A coskx exp(-iwt ) non-relativistic,
electron crosses A at arbitrary speed v, . k
Decomposing v = v, + v, and cycle-averaging the Hamiltonian

v, = (el yom) Re {A — i nabla (v,A) /o +i (v, nabla) A /o }

> f,=—(e*4y,m)nabla[A2-2B,A1% p=v,l/c



C. Chaos & resonant orbits

® Ponderomotively induced chaos : One regular field, two different time scales
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D. Relativistic transparency and intense pulse propagation

Relativistic critical density increase relevant for e fast ignition, e advanced electron
and ion acceleration schemes, e fast pulse switching and pulse tailoring

Standard formula N, = [1 + éZ/(Z)]1/2, A= (A, @/C), J= (i, —enec)

needs closer inspection

OA = —J/soc®, 0,A% =0, j= —eneu.

iz, t) = _;} Z AN == _f'lz ":.r:irh. '

Yea YU

. r 2 n.
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To be confirmed O E 4+ —
= Ner

JE = 0: ey = ()N,

What we can hope: fundamental frequency ®, cycle averaged

i
Jo=—Tuy =— Y (Vi)Vilo;
Y ot




Su-Ming Weng (2011):
Linear polarization,
a=10,

density profile length

L=3A

Wave equation well
satisfied on laser cycle
average

16 17 18 19
xf}'-

Thermal mass increase included
Remember: U four flow velocity (current);

W individual particle thermal four velocity defined by UW = u w @ = 0

Mass increase by W = w ¢
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Su-Ming Weng (2011):

ne = [1 +©8%(2)]"2n,



Su-Ming Weng (2011)

Density step, a=10, LP



Pulse propagation in relativistically undeerdense plasma
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a= 20. Remember; VgV = c?

Vp = Vg exp(- ny/ng,)



Radiation reaction
Radiation loss/sec of accelerated particle in rest frame is K a, K = ,q*/6mcC
non-rel.: dp/dt=f1_ -o, d(mv¥>2)/dt=1f_v —ov=-xa’

rel.:

K el r - Xas Bai R ik 3 0 .y OX
ka“ = ka%a,,0v = 0%,,a%, =0 = a%v, = —a%a, = 0% = —kKa

There must hold: v,6* = 0 => simplest ansatz: ¢= — kda®/dt — xaPay/c?

> 4 Abraham-Lorentz-Dirac equation
4
dy *h o [ i a- a, i
i ’:I,, = fo. + K(a™ — Tl.—"r -]

Runaway solution: T, = K/M=6.26x 105

v* = (sinh exp[r /7], 0, 0, coshexp[r /1)), a® = —l—*“r’;“} 0l (cosh explT /0], 0, 0, sinh exp[7 /7]



ALD equation in three-form

ap) - Lrd fo 8B BT __ dv
dt — fe. + ’“[ufr{ | dt ) ~2 Pl = &
”'.-' — ¥y o o F':_'I!r' o “'_-:r — 'HJ
dt — e c 'L hfff( Yl & ]

Exact solution by A. Di Piazzain Landau’s version of ALD

From the equations above follows that in circular polarization classical effects of
radiation reaction are irrelevant at all laser intensities in the optical domain.

In linear polarization classical effects become significant at intensities exceeding 10*
W/cm? and 1 pm wavelength (see following picture by A. Di Piazza)



Solution by A. Di Piazza
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FIG. 1 (color online). The electron trajectories in units of the
laser wavelength Ay calculated (a) by removing and (b) by
keeping the RR terms in Eq. (3). The initial electron energy is
40 MeV, the laser field intensity I, =5 X 10** W/cm?, the
wavelength Ay = 0.8 um, the pulse duration 27 fs and the waist
size oy = 2.5 pum. The red (gray) portions of the trajectory are
those in which the longitudinal velocity of the electron is
positive.



Summary

The motion of a charged particle in a plane wave can be solved exactly. In
circular polarization radiation reaction plays no role at any laser intensity; in
linear polarization self-field reaction in the IR becomes significant beyond / =
102 W/cm?.

When an oscillaion center exists a ponderomotive force f, can be defined.
Covariance is preserved if the cycle averaging is done in proper time along the
orbit. Under a strong particle drift £, shows a polarization dependence; uphill
acceleration is observed in the longitudinal ectric field.

In presence of a static or oscillatory field in addition to the laser wave the
particle orbits show chaotic behaviour.

In the relativistic regime the critical density increase exists on a cycle average
for the fundamental wave, however its magnitude depends on the density profile
and on polarization, circular vs linear.

A new time scale has been found for building up of the critical density.

At relativistic intensities laser pulse propagation is no longer of dispersive
character, i.e., propagation at group velocity; rather is it slowed down
considerably and is determined by partial pulse reflection from the relativistically
transparent plasma.



