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A strongly coupled quark-gluon plasma (QGP) of constituent quasiparticles is studied by a path-
integral Monte-Carlo method. This approach is a quantum generalization of the model developed
by Gelman, Shuryak and Zahed. It is shown that this method is able to reproduce the QCD lattice
equation of state, internal energy, entropy and trace anomaly and also yields valuable insight into
the internal structure of the QGP. The results indicate that the QGP reveals liquid-like rather than
gas-like properties.

I. INTRODUCTION

Investigation of properties of the QGP is one of the main challenges of strong-interaction physics, both theoretically
and experimentally. Many features of this matter were experimentally discovered at the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven. The most striking result, obtained from analysis of these experimental data [1], is that the
deconfined quark-gluon matter behaves as an almost perfect fluid rather than a perfect gas, as it could be expected
from the asymptotic freedom.

There are various approaches to studying QGP. Each approach has its advantages and disadvantages. The
most fundamental way to compute properties of the strongly interacting matter is provided by the lattice QCD
[2, 3]. Interpretation of these very complicated computations requires application of various QCD motivated, albeit
schematic, models simulating various aspects of the full theory. Moreover, such models are needed in cases when the
lattice QCD fails, e.g. at large baryon chemical potentials and out of equilibrium. While some progress has been
achieved in the recent years, we are still far away from having a satisfactory understanding of the QGP dynamics.

A semi-classical approximation, based on a point like quasiparticle picture has been introduced in [4]. It is expected
that the main features of non-Abelian plasmas can be understood in simple semi-classical terms without the difficulties
inherent to a full quantum field theoretical analysis. Independently the same ideas were implemented in terms of
molecular dynamics (MD) [5]. Recently this MD approach was further developed in a series of works [6, 7]. The MD
allowed one to treat soft processes in the QGP which are not accessible by perturbative means.

A strongly correlated behavior of the QGP is expected to show up in long-ranged spatial correlations of quarks
and gluons which, in fact, may give rise to liquid-like and, possibly, solid-like structures. This expectation is based
on a very similar behavior observed in electrodynamic plasmas [6, 8, 9]. This similarity was exploited to formulate a
classical nonrelativistic model of a color Coulomb interacting QGP [6] which was numerically analyzed by classical
MD simulations. Quantum effects were either neglected or included phenomenologically via a short-range repulsive
correction to the pair potential. Such a rough model may become a critical issue at high densities, where quantum
effects strongly affects properties of the QGP. Similar models have been used in electrodynamic plasmas and showed
poor behavior in the region of strong wave function overlap, in particular at the Mott density. For temperatures and
densities of the QGP considered in [6] these effects are very important as the quasiparticle thermal wave length is of
order the average interparticle distance.

In this paper we extend previous classical nonrelativistic simulations [6] based on a color Coulomb interaction to
the quantum regime. We develop an approach based on path integral Monte Carlo (PIMC) simulations of the strongly
coupled QGP which self-consistently takes into account the Fermi (Bose) statistics of quarks (gluons). Following an
idea of Kelbg [10], quantum corrections to the pair potential are rigorously derived1. To extend the method of quantum
potentials to a stronger coupling, an “improved Kelbg potential” was derived, which contains a single free parameter,
being fitted to the exact solution of the quantum-mechanical two-body problem. Thus, the method of the improved
Kelbg potential is able to describe thermodynamic properties up to moderate couplings [12]. However, this approach
may fail, if bound states of more than two particles are formed in the system. This results in a break-down of the
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However, their potentials are limited to weakly nonideal systems.



pair approximation for the density matrix, as demonstrated in [12]. A superior approach, which does not have this
limitation, consists in use the original Kelbg potential in the PIMC simulations which effectively map the problem
onto a high-temperature weakly coupled and weakly degenerate one. This allows one to rigorously extend the analysis
to strong couplings and is, therefore, a relevant choice for the present purpose.

This method has been successfully applied to strongly coupled electrodynamic plasmas [13, 14]. Examples are
partially-ionized dense hydrogen plasmas, where liquid-like and crystalline behavior was observed [15, 16]. Moreover,
also partial ionization effects and pressure ionization could be studied from first principles [17]. The same methods
have been also applied to electron-hole plasmas in semiconductors [18, 19], including excitonic bound states, which
have many similarities to the QGP due to smaller mass differences as compared to electron-ion plasmas.

The main goal of this article is to test the developed approach for ability to reproduce known lattice data [2] and
to predict other properties of the QGP, which are still unavailable for the lattice calculations. To this end we use a
simple model [6] of the QGP consisting of quarks, antiquarks and gluons interacting via a color Coulomb potential.
First results of applications of the PIMC method to study of thermodynamic properties of the nonideal QGP have
already been briefly reported in [20, 21]. In this paper we present a comprehensive report on the thermodynamic
properties.

II. THERMODYNAMICS OF QGP

A. Basics of the model

Our model is based on a resummation technique and lattice simulations for dressed quarks, antiquarks and gluons
interacting via the color Coulomb potential. The assumptions of the model are similar to those of [6]:

I. Quasiparticles masses (m) are of order or higher than the mean kinetic energy per particle. This assumption is
based on the analysis of lattice data [22, 23]. For instance, at zero net-baryon density it amounts to m ≥ T ,
where T is a temperature.

II. To take into account relativistic effects the kinetic part of the full quasiparticles energy is described by the
relativistic expression.

III. Interparticle interaction is dominated by a color-electric Coulomb potential, see Eq. (1).

IV. Relying on the fact that the color representations are large, the color operators are substituted by their average
values, i.e. by Wong’s classical color vectors (8D in SU(3)) with two Casimir conditions [24].

V. We consider the [2+1] flavor quark model. Since the masses of the ’up’, ’down’ and ’strange’ quark and antiquark
quasiparticles extracted from lattice data are very similar we assume that their masses (mf̃

q = mf̃ ′
q̄ ; f̃ , f̃ ′ = ’up’,

’down’ and ’strange’) and fractions (1/3) to be equal. However we account for the quark color and flavors in the
proper consideration of Fermi statistics effects. Let us stress that gluon quasiparticles obey the Bose statistics
and their masses are independent from masses of quark quasiparticles.

The quality of these approximations and their limitations were discussed in [6]. Thus, this model requires the following
quantities as a function of temperature and chemical potential as an input:

1. the quasiparticle masses, m, and

2. the coupling constant g2.

All the input quantities should be deduced from the lattice data or from an appropriate model simulating these data.

B. Path-Integral Monte-Carlo Simulations

Thus, we consider a many-component QGP consisting of Ng dressed gluon quasiparticles and of equal flavor
fractions the dressed quarks (with whole number Nq) and antiquarks (with whole number Nq̄) represented by color
quasiparticles. In thermal equilibrium to take into account the processes of creation and annihilation the average
values of these numbers and their fluctuations can be found in the grand canonical ensemble defined by the chemical



potential and temperature dependent Hamiltonian, which can be written as Ĥ = K̂ + Û . The kinetic and color
Coulomb interaction energy of the quasiparticles are

K̂ =
∑

i

√
p2

i + m2
i (T, μq) ÛC =

1
2

∑
i,j

g2(|ri − rj |, T, μq)〈Qi|Qj〉
4π|ri − rj | , (1)

Here i = 1, . . . , Nq + Nq̄ + Ng, the Qi denote the Wong’s color variable (8-vector in the SU(3) group), T is the
temperature and μq is the quark chemical potential, 〈Qi|Qj〉 denote scalar product of color vectors. In fact, the
quasiparticle mass and the coupling constant, as deduced from the lattice data, are functions of T and, in general,
μq. Moreover, g2 is a function of distance r, which produces a linearly rising potential at large r [25].

The thermodynamic properties in the grand canonical ensemble with given temperature T , chemical potential μq

and fixed volume V are fully described by the grand partition function

Z (μq, β, V ) =
∑

Nq,Nq̄,Ng

exp(μq(Nq − Nq̄)/T )
Nq!Nq̄!Ng!

∑
σ

∫
V

drdQ ρ(r, Q, σ, f ; Nq, Nq̄, Ng; β), (2)

where ρ(r, Q, σ, f ; Nq, Nq̄, Ng; β) denotes the diagonal matrix elements of the density matrix operator ρ̂ = exp(−βĤ),
and β = 1/T . Here σ, r and Q denote the spin, spatial and color degrees of freedom of all quarks, antiquarks and
gluons, while f is flavor degrees of freedom of all quarks and antiquarks in the ensemble, respectively. Values of
flavor index are defined by the fixed fraction of related numbers of quark and antiquark quasiparticles (see position
V in the model description). Correspondingly, the σ summation and integration drdQ run over all individual degrees
of freedom of the particles. Since the masses and the coupling constant depend on the temperature and chemical
potential, special care should be taken to preserve thermodynamical consistency of this approach. In order to preserve
the thermodynamical consistency, thermodynamic functions such as pressure, P , entropy, S, baryon number, NB, and
internal energy, E, should be calculated through respective derivatives of the logarithm of the partition function

P = ∂(T ln Z)/∂V, S = ∂(T ln Z)/∂T,
NB = (1/3)∂(T ln Z)/∂μq, E = −PV + TS + 3μqNB. (3)

This is a conventional way of maintaining the thermodynamical consistency in approaches of the Ginzburg–Landau
type as they are applied in high-energy physics.

The exact density matrix ρ = e−βĤ of interacting quantum systems can be constructed using a path integral
approach [26, 27] based on the operator identity e−βĤ = e−ΔβĤ · e−ΔβĤ . . . e−ΔβĤ , where the r.h.s. contains n + 1
identical factors with Δβ = β/(n + 1). which allows us to rewrite2 the integral in Eq. (2)

∑
σ

∫
dr(0)dQ(0) ρ(r(0), Q(0), σ, f ; Nq, Nq̄, Ng; β) =

=
∫

dr(0)dQ(0)dr(1)dQ(1) . . . dr(n)dQ(n) ρ(1) · ρ(2) . . . ρ(n) ×

×
∑

σ

∑
Pq

∑
Pq̄

∑
Pg

(−1)κPq +κPq̄S(σ, P̂qP̂q̄P̂gσ
′) P̂qP̂q̄P̂gρ

(n+1)
∣∣
r(n+1)=r(0),σ′=σ

=

=
∫

dQ(0)dr(0)dr(1) . . . dr(n)ρ̃(r(0), r(1), . . . r(n); Q(0), f (0); Nq, Nq̄, Ng; β). (4)

The spin gives rise to the spin part of the density matrix (S) with exchange effects accounted for by the
permutation operators P̂q, P̂q̄ and P̂g acting on the quark, antiquark and gluon color Q(n+1), flavor f (n+1)

and spatial r(n+1) coordinates, as well as on the spin projections σ′. The sum runs over all permutations
with parity κPq and κPq̄ . In Eq. (4) the index l = 1 . . . n + 1 labels the off-diagonal density matrices ρ(l) ≡
ρ

(
r(l−1), Q(l−1), f (l−1); r(l), Q(l), f (l); Δβ

) ≈ 〈r(l−1)|e−ΔβĤ |r(l)〉δε(Q(l−1) − Q(l))δf(l−1),f(l) , where δε(Q(l−1) − Q(l))
is a delta-function at ε → 0, while δf(l−1),f(l) is the Kronecker’s delta . Accordingly each a particle is represented
by a set of n + 1 coordinates (“beads”), i.e. by (n + 1) 3-dimensional vectors {r(0)

a , . . . r
(n)
a }, flavor index f (0) and a

2 For the sake of notation convenience, we ascribe superscript (0) to the original variables.



8-dimensional color vector Q(0) in the SU(3) group, since all beads are characterized by the same flavor and color
charge.

The main advantage of decomposition (4) is that it allows us to use perturbation theory to obtain approximation
for density matrices ρ(l), which is applicable due to smallness of artificially introduced factor 1/(n+1). From physical
point of view this means that the characteristic distance between subsequent “beads” r

(l−1)
a and r

(l)
a for each particle

in Eq. (4) can be always made smaller then a characteristic scale of variation of the potential energy. Each factor in
(4) should be calculated with the accuracy of order of 1/(n + 1)θ with θ > 1, as in this case the error of the whole
product in the limit of large n will be equal to zero. In the limit (n+1) −→ ∞ ρl can be approximated by a product of
two-particle density matrices. Generalizing the electrodynamic plasma results [14] to the case of an additional bosonic
species (i.e. gluons), we write

ρ̃(r(0), r(1), . . . r(n); Q(0), f (0); Nq, Nq̄, Ng; β) =

=
∑
s,k

Cs
Nq

2Nq

Ck
Nq̄

2Nq̄

exp{−βU(r, Q, β)}
λ̃

3Nq
q λ̄

3Nq̄

q̄ λ̃
3Ng
g

per ||φ̃n,0||glue det ||φ̃n,0||s det ||φ̃n,0||k
n∏

l=1

N∏
p=1

φl
pp , (5)

where N = Nq + Nq̄ + Ng, s and k are numbers of quarks and antiquarks, respectively, with the same spin
projection, λ̃3

a = λ3
a

√
0.5π/(βm)5; λa =

√
2πβ/ma is a thermal wavelength of an a particle, Cs

Na
= Na!/[s!(Na − s)!],

the antisymmetrization and symmetrization are taken into account by the symbols “det” and “per” denoting the
determinant and permanent, respectively.

For zp = Δβmp(T, μq)

√
1 + 2π

∣∣∣ξ(l)
p

∣∣∣2 /Δβmp(T, μq) functions φl
pp proportional to off-diagonal matrix elements

of one particle relativistic density matrices are defined by φl
pp ≡ K2(zp)/z2

p, while matrix elements φ̃n,0
to =

K2(z
n,0
to )/(zn,0

to )2δε(Qt − Qo)δft,fo depend on zn,0
to = Δβmt(T, μq)

√
1 + 2π

∣∣∣(r(0)
t − r

(0)
o ) + y

(n)
t

∣∣∣2 /(Δλ2
aΔβmt(T, μq)).

Here t and o are particle’s indexes, K2(z) are modified Bessel functions with arguments expressed in terms of distances
(y(1)

a , . . . , y
(n)
a ) and dimensionless distances (ξ(1)

a , . . . , ξ
(n)
a ) between neighboring beads of an a particle, defined as

r
(l)
a = r

(0)
a + y

(l)
a , (l > 0), and y

(l)
a = Δλa

∑l
k=1 ξ

(k)
a and Δλa =

√
2πΔβ/ma. Notice that the indices s and k

in det ||φ̃n,0||s and det ||φ̃n,0||k denoted that matrices ||φ̃n,0|| have nonzero blocks related to quark and antiquark
quasiparticles with the same flavor and spin projections. The main contribution to the partition function comes from
configurations in which the “size” of the cloud of beads of quasiparticles is of the order of 1/m(T, μq) providing spatial
quasiparticle localization.

The density matrix (5) has been transformed to a form which does not contain an explicit sum over permutations and
thus no sum of terms with alternating sign (in the case of quarks and antiquarks). Let us stress that the determinants
depend also on the flavor and color variables.

In Eq. (5) the total color interaction energy

U(r, Q, β) =
1

n + 1

n+1∑
l=1

Ũ (l) =
1

n + 1

n+1∑
l=1

1
2

∑
p�=t

Φpt(|r(l−1)
p − r

(l−1)
t |, |r(l)

p − r
(l)
t |, Qp, Qt) (6)

is defined in terms of off-diagonal two-particle effective quantum potential Φpt, which is obtained by expanding the
two-particle density matrix ρpt up to the first order in small parameters 1/(n + 1):

ρpt(r, r′, Qp, Qt, Δβ) ≈ ρ0
pt(r, r

′, Qp, Qt, Δβ) −
∫ 1

0

dτ

∫
dr′′

Δβg2(|r′′|, T, μq)〈Qp|Qt〉
4π|r′′|Δλ2

pt

√
τ(1 − τ)

× exp
(
− π|r′ − r′′|2

Δλ2
pt(1 − τ)

)
exp

(
−π|r′′ − r|2

Δλ2
ptτ

)
≈ ρ0

pt exp[−ΔβΦpt(r, r′, Qp, Qt)], (7)

where ρ0 is nonrelativistic one particle density matrix, r = rp − rt, r′ = r′p − r′t, Δλpt =
√

2πΔβ/mpt, mpt =
mpmt/(mp + mt) is the reduced mass of the (pt)-pair of particles, and ρ0

pt is the ideal two-particle density matrix.
The result for the diagonal color Kelbg potential can be written as

Φpt(r, r, Qp, Qt) ≈ g2(T, μq) 〈Qp|Qt〉
4πΔλptxpt

{
1 − e−x2

pt +
√

πxpt [1 − erf(xpt)]
}

, (8)

where xpt = |rp − rt|/Δλpt. Here the function g2(T, μq) = g2(r′′, T.μq), resulting from averaging of the initial
g2(r′′, T, μq) over relevant distances of order Δλpt, plays the role of an effective coupling constant. Note that the color



Kelbg potential approaches the color Coulomb potential at distances larger than Δλpt. What is of prime importance,
the color Kelbg potential is finite at zero distance, thus removing in a natural way the classical divergences and making
any artificial cut-offs obsolete. This potential is a straightforward generalization of the corresponding potential of
electrodynamic plasmas [12]. The off-diagonal elements of the effective interaction are approximated by the diagonal
one by means of Φpt(r, r′; , Qp, Qt) ≈ [Φpt(r, r, Qp, Qt) + Φpt(r′, r′, Qp, Qt)]/2.

III. SIMULATIONS OF QGP

To test the developed approach we consider the QGP only at zero baryon density. Ideally the parameters of the
model should be deduced from the QCD lattice data. However, presently this task is still quite ambiguous. Therefore,
in the present simulations we take a possible set of parameters. The phenomenologic QCD estimations [? ] of coupling
constant, i.e. αs = g2/(4π), used in the simulations is displayed in the left panel of Fig. 1. The T -dependence of
quasiparticle mass used in this work is also presented in Fig. 1 (left panel). The right panel presents the calculated
in grand canonical ensemble the temperature dependences of the interparticle average distance (Wigner-Seitz radius
r3
s = (3/4πn), n is the density of all quasi particles. The quark quasiparticles degeneracy parameter χ = nqλ

3
q and

the plasma coupling parameter Γ are defined as:

Γ =
q2g

2

4πrsT
, (9)

where q2 the quadratic Casimir value averaged over quarks, antiquarks and gluons, q2 = N2
c − 1 is a good estimate

for this quantity. The plasma coupling parameter is a measure of ratio of the average potential to the average kinetic
energy. It turns out that Γ is larger the unity which indicates that the QGP is a strongly coupled Coulomb liquid
rather than a gas. In the studied temperature range, 1 < T/Tc < 3, the QGP is, in fact, quantum degenerate, since the

Рис. 1: Left panel:Temperature dependences of the model input quantities: the coupling constant αs (scaled by 5) and
quasiparticle mass-to-temperature ratio. Right panel: Temperature dependences of the calculated interparticle average distance
rs (Wigner-Seitz radius) and related the quark quasiparticles degeneracy parameter χ and the plasma coupling parameter Γ
[see Eq. (9)]. The degeneracy parameters for different species does not coincide, since the quasiparticle masses are different.

degeneracy parameter χ = nqλ
3
q (where the thermal wave length λq was defined in the previous sect.) varies from 50

to 5, see Fig. 1 (right panel). The degeneracy parameters for different species does not coincide, since the quasiparticle
masses are different.

Calculation of the equation of state (Fig. 2) was used to optimize the parameters of the model in order to proceed
to predictions of other properties concerning the internal structure and in the future also non-equilibrium dynamics
of the QGP.

Figure 3 additionally presents the entropy (S) and trace anomaly (ε − 3P ) of the QGP computed in the PIMC
method. These quantities are calculated accordingly to Eqs. (3). In order to avoid the numeric noise, the derivative
of a smooth interpolation between the PIMC points (Fig. 2) was taken. These results are compared to lattice data
of [2, 3]. It is not surprising that agreement with the lattice data is also good, since it is a direct consequence of the
good reproduction of the pressure.

Details of our path integral Monte-Carlo simulations have been discussed elsewhere in a variety of papers and review
articles, see, e.g. [28] and references therein. The main idea of the simulations consists in constructing a Markov process



Рис. 2: Equation of state (pressure versus temperature) of the QGP from PIMC simulations (open squares) compared to lattice
data of [2, 3]. The solid line is a smooth interpolation between the PIMC points.

Рис. 3: Entropy (left panel) and trace anomaly (right panel) of the QGP from PIMC simulations (solid line) compared to lattice
data of [2, 3]. Notation is the same as in the right panel of Fig. 2.

of configurations which differ by the particle coordinates. Additionally to the case of electrodynamic plasmas, here
we randomly sample, according to the group measure, the color variables Q of all particles until convergence is
achieved. We use a cubic simulation box with periodic boundary conditions. The number of particles was taken as
N = Nq + Nq̄ + Ng = 40 + 40 + 40 = 120, and the number of beads, n = 20.

Let us now consider the spatial arrangement of the quasiparticles in the QGP by studying the pair distribution
functions (PDF’s) gab(r). They give the probability density to find a pair of particles of types a and b at a certain
distance r from each other and are defined as

gab(R1 − R2) =
1

ZNq!Nq̄!Ng!

∑
σ

∫
drdQ δ(R1 − ra

1 )δ(R2 − rb
2)ρ(r, Q, σ; β). (10)

The PDF’s depend only on the difference of coordinates because of the translational invariance of the system. In a
non-interacting classical system, gab(r) ≡ 1, whereas interactions and quantum statistics result in a re-distribution of
the particles. Results for the PDF’s at temperatures T/Tc = 3 and T/Tc = 1.1 are shown in the panels of Fig. 4.

At distances, r/σ ≥ 0.2, all PDF’s of particles (Fig. 4) coincide. A drastic difference in the behavior of the PDF’s of
quarks and gluons (the anti-quark PDF is identical to the quark PDF) occurs at distances r/σ ≤ 0.2. Here the gluon
PDF increases monotonically when the distance goes to zero, while the PDF of quarks (and antiquarks) are practically
equal to one. This difference is the effect of the quantum statistics. The enhanced population of low distance states of
gluons is due to Bose statistics and the color-Coulomb attraction. In contrast, the weak variation of PDF for quarks
at the small distance range is a consequence of high degeneracy, as masses of quark and antiquark quasiparticles are
several time smaller. In an ideal Fermi gas g(r) for particles with different flavor, colors and/or opposite spins the
PDF equals unity in the limit r → 0. Oscillations of the PDF at very small distances of order r ≤ 0.1σ are related to
Monte Carlo statistical error, as probability of quasiparticles being at short distances quickly decreases.



Рис. 4: Pair distribution functions of identical (left panels) and different (right panels) quasiparticles at temperatures T/Tc = 3
(upper panels) and T/Tc = 1.1 (lower panels). The distance is measured in units of σ = 1/Tc = 1.1 fm.

At small distances, r ≤ 0.2σ, a strong increase is observed in all PDF’s of quark-gluon particles (right panel of Fig.
4), which resembles the behavior of the gluon-gluon PDF. Strong enhancement of PDF functions is connected with
more strong interaction with gluon quasiparticles, as quadratic Casimir for gluons is much more than the same value
for quarks. This increase is also a clear manifestation of an effective pair attraction. This attraction suggests that the
color vectors of nearest neighbors of any type are anti-parallel.

Thus, at T/Tc = 3 we observe signs of a spatial ordering, cf. the peak of the quark PDF around r/σ = 0.1 − 0.2,
which may be interpreted as emergence of liquid-like behavior of the QGP. Much more pronounced is the short-range
structure of nearest neighbors. The QGP lowers its total energy by minimizing the color Coulomb interaction energy
via a spontaneous “anti-ferromagnetic” ordering of color vectors. This gives rise to a clustering of quarks, antiquarks
and gluons. To verify the relevance of these trends, a more refined spin-resolved analysis of the PDF’s and CPDF’s is
necessary, together with simulations in a broader range of temperatures which are presently in progress.

IV. CONCLUSION

Quantum Monte Carlo simulations based on the quasiparticle picture of the QGP are able to reproduce the lattice
equation of state (even near the critical temperature) and also yield valuable insight into the internal structure of
the QGP. Our results indicate that the QGP reveals liquid-like (rather than gas-like) properties even at the highest
considered temperature of 3Tc.

Our analysis is still simplified and incomplete. It is still confined only to the case of zero baryon chemical potential.
The input of the model also requires refinement. Work on these problems is in progress.

However, the PIMC method is not able to yield dynamical and transport properties of the QGP. One way to
achieve this is to develop semiclassical color molecular dynamics simulations. In contrast to previous MD simulations
[6], where quantum effects were included phenomenologically via a short range potential, we have developed a more
rigorous approach to study the dynamical and transport properties of strongly coupled quark-gluon systems which
is based on the combination of the Feynman and Wigner formulation of quantum dynamics. The basic ideas of this



approach for the electron-ion plasmas have been published in [29]. In particular, this approach allows us to deduce
the viscosity of the QGP. Work on these problems is also in progress.
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