MeV Electron Generation and Transport using Second Harmonic Laser Pulses for Fast Ignition

R. Fedosejevs

University of Alberta

Frontiers of Plasma Physics and Technology Singapore, April 18-22, 2011 H Friesen, A Beaudry, J Tait, J Westwood, HF Tiedje, S Singh[,] MZ Mo, YY Tsui *University of Alberta*

DP Higginson, A Sorokovikova, CC Jarrott, B Westover, FN Beg University of California San Diego

A Link, GE Kemp, KU Akli, RR Freeman, LD Van Woerkom Ohio State University

D Hey, Y Ping, C Chen, MH Key, HS McLean, P Patel, T Doeppner Lawrence Livermore National Laboratory

> RB Stephens General Atomics

I Bush, J Pasley

University of York

Laser Fusion

Direct Drive

Fast Ignition

Ignition Requirements

 $\rho \sim 300 \text{ g cm}^{-3}$

Fuel Compression

Ignition

Fusion Burn

 τ_{dep} ~ 20 ps **D**_{dep} ~ 40 μm

E_{dep} ~ 20 kJ

E_{laser} ~ 100 kJ

φ_{laser} ~ 20 - 40 μm

I_{laser} ~ 0.4 − 1.6 x 10²¹ W cm⁻²

Requires electrons or ions to carry the energy from the laser absorption region to the compressed core

Electron Energy Scaling

Required electron energies ~ 1-3 MeV

Scaling Laws:

Wilks (Ponderomotive) PRL 69, 1383 (1992)

Beg (Exp Bremsstrahlung) Phys.Plasmas 4,447 (1997)

Haines (Energy/Momentum) PRL 102, 045008 (2009)

2_{\omega} Experiment Objectives

Determine scaling at 2ω for hot electron generation

Measure

- T_{hot}
- Electron generation efficiency
- Divergence
- Specular Beam reflection and chirp

Geometries

- Flat Foils with Cu tracer layer
- Buried Cones with Cu tracer layer
- Cone wire

Diagnostics

- HOPG CU K_{α} x-ray spectrometers
- Electron spectrometers
- X-ray Bremsstrahlung versus angle
- Cu K_{α} imaging crystals
- KB x-ray microscope
- Specular Imaging and FROG

Experimental Diagnostic Layout

2 \omega Titan Run Parameters

50 J 700 fs 0.53 μm 5 x 10¹⁹ W cm⁻²

Planar Foil Targets Buried Cone targets Cone foil Targets Cone Wire Targets

Laser Diagnostic Layout - 2ω

Input FROG Signals

710 fs pulse duration with slight chirp

Conversion Efficiency

Peak Conversion efficiencies of over 60% obtained - 2mm KDP crystal

Typical Low Energy Focal Spot on Target

Low Intensity Focal Spot at TCC

Estimated Radially Symmetric Target Intensity Distribution for 50J 700 fs

Equivalent FWHM Spot Diameter = 8 µm

Targets used

Shots taken with no prepulse (<10 μ J) or with injected 3mJ 3ns 2 ω prepulse

Spectralon Reflectivity Mesurement Setup

DEPARTMENT OF STATE PHYSICS

Imaging System •On Door H •Looking through Port H1 Spectralon • 10" x 10" spectralon • In front of Door E • Holes aligned to allow FROG through port E2 • F/1.5 beam collection

Specular Reflectivity Images Titan 2w run

No prepulse

3mJ prepulse

- Speckle pattern seen from no prepulse shots perhaps speckle from surface roughness
- Smooth pattern seen for shots with prepulse smoothing from preplasma

Reflectivity $1\omega vs 2\omega$

DEPARTMENT OF STATE UNIVERSITY DEPARTMENT OF

FROG data shows prepulse effect

3mJ prepulse

No prepulse

Wavelength <

- Large red shift at the beginning: due to pushing in of preplasma?
- Very reproducible

Electron Spectrometer Setup

Typical 2₀₀ Electron Spectra 15^o

No Prepulse

With Prepulse

Typical 1ω Electron Spectra 15°

Measured with the same spectrometer and similar targets

T_{hot} ∼ 6 MeV

at 1 ω

Electron Spectrometer 25° off axis

T_{h} at 25° ~ 0.6 x T_{h} at 15°

Electron Spectrometer Summary 1ω vs 2ω

 T_h fits modified Pondermotive scaling law ($T_h \sim 1.7 T_{PM}$)

Bremsstralung Cannon Data

Filtered image plate stack with Pb collimator sensitive up to 500keV

Bremsstralung Cannon Data Fits vs Electron source Divergence

Bremsstralung Cannon Preliminary Summary

	Half Width	T _{hot}	Conversion Efficiency
Planar no pp	60°	0.37 MeV	11 %
Planar with pp	71°	0.50 MeV	17 %

Compare to 1th data for Ag target (Westover APS 2010):

- Electron Divergence ~ 60° (HW)
- Conversion Efficiency ~ 32%-38%

Compare to 1ω data for AI target (Chen PoP 16, 082705 2009):

- T_{hot} ~ 1.3 MeV
- Conversion Efficiency ~ 20-40%

Cu K_{α} HOPG Data: 1 ω vs 2 ω - Planar

Cu K_{α} HOPG Data: Buried Cones vs Planar (2 ω)

Electron Imaging Divergence Measurements

Electron Beam Divergence from K_{\alpha} images

Preliminary Electron Beam Divergence - Planar

Preliminary Electron Beam Divergence – Buried Cones

Initial LSP simulations with Laser Plasma Interaction Physics – Comparison to Data

TIME INTEGRATED CU K α DISTRIBUTIONS – NO PREPULSE CU FLUOR DEPTH 20.5 μm DEEP

Initial LSP Code Comparison to data

TIME INTEGRATED CU Kα DISTRIBUTIONS – NO PREPULSE CU FLUOR DEPTH 111 μm DEEP

20100824_s06_CuKaSouth

Cone Wire Target – KB Image with no Prepulse

Viewed at approximately 45° angle

Laser

Summary - Electron Energy Scaling

Experimental Results

Scaling Laws:

Wilks (Ponderomotive) PRL 69, 1383 (1992)

Beg (Exp Bremsstrahlung) Phys.Plasmas 4,447 (1997)

Haines (Energy/Momentum) PRL 102, 045008 (2009)

Summary

- Successful implementation of 2ω target experiments at 50J 700fs level at the TITAN facility
- Conversion efficiencies over 60% obtained
- Intrinsic prepulse less than 10 μJ
- Controlled injection of prepulse of 3ns 3mJ
- Preliminary analysis of the experimental results carried out thus far
- Initial electron temperatures colder than 1ω as expected from $I\lambda^2$ scaling

T_{hot} ~ 0.37 – 0.50 MeV (Bremsstrahlung)

~ 1.5 – 1.9 MeV (escaping hot electrons)

Summary

- Initial divergence angles similar to 1ω
- Difference seen between angularly resolved Bremsstrahlung and Kα imager angles
 - FW ~ 120° 142° Bremsstrahlung
 - FW ~ $36^{\circ} 62^{\circ}$ K_a imaging
- Buried Cones show slightly larger divergence angles
- Absorption and electron yield lower than 1ω as expected for lower $l\lambda^2$
 - η_{e-} ~ 11 17 %
 - R ~ 27 14%
- Red shift and smoothing seen in specular reflection with prepulse indicating preplasma effects
- Extensive modeling under way to better understand the results

