FAST IGNITION AT VERY HIGH ENERGY

C. Deutsch¹ and J.-P. Didele z^2

¹LPGP UParis XI - 91405 Orsay, France ²IPN - UParis XI - 91405 Orsay, FRANCE

5th INTERNATIONAL CONFERENCE ON THE FRONTIERS OF PLASMA PHYSICS and TECHNOLOGY

SINGAPORE, 18-22 April 2011

Cone-guided fast ignition with γ -production, through REB-Au interaction

FIGURE 1. Particle production processes triggered by the large electron, ion, and γ fluxes which result from a petawatt laser shot focused into underdense plasma, followed by a solid target. Notice the different scales of plasma and the solid region.

S.Karsch et al LPB 17.565(1999)

HIGH ENERGY REB $(\gamma_b >> 1)$

- Less initial intensity requested
- Easier 'piercing' through electromagnetic instabilities
- Novel stopping mechanisms available
- Strong Langmuir stopping efficient at $\gamma_b >> 1$
- Huge number of possible collisional stopping channels available

GROWTH RATES OF E.M. INSTAS DECREASE WITH Yb

In the beam direction, the Two-Stream instability reaches a maximum for $Z_z \sim 1$ with maximum growth rate in ω_p units

$$\delta^{\text{TS}} \sim \frac{\sqrt{3}}{2^{4/3}} \frac{\alpha^{1/3}}{\gamma_b}$$

In the direction normal to the beam, the Filamentation instability instability growth rate behaves for small Z_x as

$$\delta^{\rm F} \sim \sqrt{\frac{\alpha}{\gamma_b}} Z_{\rm X}$$
, $Z_{\rm X} = \frac{k_{\rm X} V_p}{\omega_p}$

and then saturates for $Z_x >> \beta$ at

$$\delta^{\rm F} \sim \sqrt{\frac{\alpha}{\gamma_{\rm b}}}.$$

Absolute maximum growth rate for oblique

Maximum Two-

wave vector with $Z_z \sim 1$ and $Z_x >> 1$. Stream/Filamentation growth rate

$$\delta^{\text{TSF}} \sim \sqrt{\frac{3}{2^{4/3}}} \left(\frac{\alpha}{\gamma_b}\right)^{1/3}.$$

A. BRET et C. DEUTSCH, PoP 12, 82704 (2005)

Strong Langmuir Turbulence

 $\theta = angle (\overrightarrow{REB}, \overrightarrow{k})$

Wr = energy density in L waves resonating/REB A crude threshold estimate for spectra with the typical $k \sim \omega_e/c$ is $W_{th} \sim n_e T_e^2/m_e c^2$. Local REB relaxation length in turbulence is $L_r \sim (c/2\omega_e)(m_e c^2/T_e)^2 (\gamma_b \Delta \theta)^2 (W_{th}/W_r)$. For $\omega_e \sim 6 \times 10^{17} \text{ sec}^{-1}$ and $T_e \sim 5 \text{ keV}$, this simplifies to $L_r \sim 2.5 (\gamma_b \Delta \theta)^2 (W_{th}/W_r) \ \mu m$.

If $W_r > W_{th}$, this length would not exceed 50 µm for $\gamma_b \Delta \theta \le 5$.

V M Malkin and N J Fisch PRL89,125004(2002) T Yabuuchi et al New J Phys 11,093031(2009)

REB STOPPING THROUGH 2-STREAM INSTABILITY

Based upon a single wave approximation in which the wave is assumed to reach its maximur amplitude instantaneously, a semi quantitative analytic solution for the fraction of beam energ converted into electric field energy is predicted to be

W = $|E|^2 / 16\pi n_b \gamma_b mc^2 = 0.5 \ S(1+S)^{-5/2} \sim 10\%$ of initial beam energy at Eb~MeV where $\beta_b \gamma_b (n_b / 2n_p)^{1/3}$ is the strength parameter and $\gamma_b = v_b / c$ cf L.E. Thode. Phys. Fluids 19, 305 (1075) 0.15 0.10 $\frac{S}{(1+S)^{5/2}}$ 0.05 2 6 10 S Maximum at $E_b = 15$ MeV for $\frac{n_b}{n_p} \sim 10^{-4}$ Maximum at $E_b = 200$ MeV for $\frac{n_b}{n_p} \le 10^{-7}$

REB STOPPING THROUGH SHOCK IN INHOMOGENEOUS PLASMA

cf S.K Yadav et al. POP 16, 040701 (2009)

- 2D EMHD

- Net Energy Dissipation Rate over Length L

 $Q \sim KLb^2 a^2 V_b$

$$= \frac{B^2}{4\pi} \pi a^2 V_b = I^2 \frac{V_b}{c^2} = R I^2$$

with

k = inverse of normalized density scale length

b = normalized B in x - z plane

a = channel dimension

I = 300 kA at $E_b = 10 \text{ MeV}$ can thus get stopped

REB Stopping on Target Ions

Rosenbluth-point scattering for point-protons with real values of nuclear spin and magnetique moment. The appropriate cross section is given with K = 1.79 nuclear magnetons, $\mu_p = 2.79$ n.m. by

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm R} = \left(\frac{e^2}{2E_0}\right)^2 \frac{\cos^2 \theta/2}{\sin^4 \theta/2} \frac{1}{1 + \frac{2E_0}{Mc^2} \sin^2 \theta/2} \\ \left\{1 + \frac{\hbar^2 q^2}{4M^2 c^2} \left[2(1+K)^2 \tan^2 \theta/2 + K^2\right]\right\} \\ (\mu p - 1 + K - 2.79 \text{ n.m.})$$

REB STOPPING ON TARGET ELECTRONS

The following expression has been obtained as a careful pseudoanalytic fit to quantum stopping results. It is essentially accurate for $n_e \check{S} 10^{26}$ e-cm⁻³, as evidenced from stopping data. $-\frac{dE_{b}}{dx} = \frac{4\pi ne^{4}}{mv^{2}} \ln \left(\frac{2mc^{2}\gamma_{b}^{2}}{\hbar\omega_{c}}\right)$ K Starikov and C. Deutsch, PRE 71, 026407 (2005) Equivalent section efficace (cross section) $-\frac{dE_{b}}{dx}\left(\frac{MeV}{cm}\right) = n * E_{b} * 2.5 \times 10^{-25} cm^{+2}$ equivalent σ 100 times Trident process for $E_b = 200$ MeV. $R(\mu m) = 259 \text{ at } 15 \text{ Mev}$ 24 at 1 MeV

Total cross section σ_T of the trident process plotted vs the dimensionless electron-energy excess above the threshold. Here $\gamma = E/m_0c^2$. Quasielastic Electron Scattering from ³He and ³H

Typical graphs in electrodisintegration of 3 He,T,(a) and (b) show the one-photon-exchange two- and three-body breakup of 3 He, $\overline{1}$,(c) shows the decomposition of the p-D- 3 He nuclear vertex into the proton pole (1) and a correction to the proton pole (2). All intermediate states are on the mass shell.

Möller Diagram

D⁺ Electro disintregation

One virtual Gamma only up to 1 GeV

T⁺ Electro-Disintregation

nS-state pion capture fractions in hydrogen

M. Leon and H.A. Bethe, Phys. Rev. 127, 636 (1962)

Capture on level $n \sim (M_{\pi}/M_e)^{1/2} \sim 16$ and cascade down $\rightarrow n = 1$

Principal quantum number nS-state capture fraction

n	
7	0.003
6	0.013
5	0.09
4	0.44
3	0.39
2	0.04

REB-Hard Gamma Conversion

- Cone target allows for electro as well as DT fuel <u>disintegration</u>
- Hard Gammas easily secured through REB bremsstrahlung in gold with

$$dE/dx)_{rad}/dE/dx)_{coll} = E_{REB} Z/1600 mc^2$$

CONTRIBUTION TO D- and T – PHOTO DISINTEGRATION THROUGH

REB-BREMSSTRAHLUNG IN Au (Z = 79)

$$Z^{2}n_{i} = \frac{Z^{2}\rho N_{A}}{A} \sim 3.66 \times 10^{26} e - cm^{-3} \# Z^{2}n_{e} \sim 10^{26} e - cm^{-3}$$
$$\frac{\sigma_{T}}{\sigma_{\gamma \to e^{+}e^{-}}} = \frac{\alpha}{\pi} \left[log \left(\frac{E_{0}}{m_{e}c^{2}} \right) log \left(\frac{E_{0}}{2.137m_{e}c^{2}Z^{-1/3}} \right) + \frac{1}{3} log^{2}(2.137 Z^{-1/3}) \right]$$
$$= 0.017 \text{ at } 5 \text{ MeV}$$

,

H.J. Bhabba, Proc. R. Soc. London A 152, 559 (1935), cf. J Myatt et al. POP 79, 066409 (2009).

π^{-} Catalyzed Fusion in FIS Conditions

- π production Cost ~150 MeV << 5.2-8 GeV in cold μ CF
- $\sigma_{\pi-N} (a \sim -0.036 \text{ fm}) << \sigma_{N-N} (a \ge 1-8 \text{ fm})$

₽

- Catalytic cycle Mostly electromagnetic
- π -D, π -T ground state hadronically shifted only by 0.022 percent!!
- Cycling rate $(n_e \sim 10^{26} \text{ e-cm}^{-3}) \ge 10^3$ cold cycling rate $(n_{LHD} \sim 4.25 \times 10^{22} \text{ e-cm}^{-3})$
- Reduced final pion alpha sticking in hot, dense plasma.

Relevant lengths

$$n_e \sim 10^{26} e - cm^{-3}$$
 T ~ 1 keV

$$a_{ii} = \left(\frac{4}{3}\pi n_i\right)^{-1/3} \sim 1.33 \times 10^{-9} \text{ cm}$$

Debye length ~ 2.35×10^{-9} cm Bohr radius (electron) = 5.29×10^{-9} cm. Bohr radius (pion) = 1.94×10^{-11} cm π -D and π -T atoms hardly affected by electron Debye-screening. Considering an ignition plasma (N~ 10^{26} /cc, T~3-5 KeV)in a Debye approximation demonstrates a persistence of pionic molecular ions pi-D+T+ with 319.13 eV binding energy for vibrational number V= 0 and total angular momentum number J = 0, wrt to D⁺- π^{-} and T⁺- π^{-} . Such bound systems are equivalent to excited atoms with main quantum number N = 12 and exhibiting anisotropy due to a nearby D+ or T+ion.

N = 12 remains out of immediate nuclear capture

BORROMEAN STABLE CONFIGURATIONS

$DT_{\pi}, DD_{\pi}, TT_{\pi}, DT_{\pi\pi}, DD_{\pi\pi}, T_{\pi\pi},$

Let us number the particles in such a way that the following inequalities are valid for their masses:

 $m_1 \ge m_2, m_3 \ge m_4, m_2 \ge m_4.$

With this numbering of particles the lowest dissociation threshold for the four-particle system, E_{th} , in the system of Hartree atomic units ($\hbar = 1$, $m_e = 1$, $q_e = 1$) is

while the lowest dissociation (ionization) threshold for the three-particle system is

$$E_{\text{th}}(m_1^+m_2^+m_3^-) = -\frac{m_1m_3}{2(m_1+m_3)}$$
$$s = \left(\frac{1}{m_1} + \frac{1}{m_3}\right) \left(\frac{1}{m_2} + \frac{1}{m_4}\right)$$

 $0.4710 \le s \le 2.1231$ Stable

BORROMEAN CONFIGURATIONS $T^{+}D^{+}\pi^{-}e^{-}$ system (s = 0.0007) unstable

In these Borromean schemes, DT_{π} , $DT_{\pi\pi}$... with s ≈ 1 are stable. This system can bind one more electron forming (M⁺, M⁺, x⁻, e⁻, e⁻), which is akin to H⁻. A possible choice of x⁻ is π . The (p,p, π) system is bound, and the (p,p,e⁺, π) and (p,p,e⁻,e⁻ π) systems are also bound. These systems remain bound even if the masses of the heavy particles are slightly different, e.g., the (M⁺₁, M⁺₂, e⁻, e⁻, x⁻) system is bound as a rough estimate for $1/3 < M_1/M_2 < 1$.

$$\frac{m_{\rm D}}{m_{\rm T}} \sim 2/3$$

In a mostly electron-screened target, mesomolecules appear nearly Coulombian

DEBYE-SCREENED MOLECULES

$$V(\mathbf{r}_{a},\mathbf{r}_{b}) = q_{a}q_{b} \exp \frac{(-|\mathbf{r}_{a} - \mathbf{r}_{b}|)}{D} / |\mathbf{r}_{a} - \mathbf{r}_{b}| .$$

$$H = -\frac{1}{2m_{1}} \nabla_{1} - \frac{1}{2m_{2}} \nabla_{2} - \frac{1}{2m_{3}} \nabla_{3} + V(\mathbf{r}_{3},\mathbf{r}_{1}) + V(\mathbf{r}_{3},\mathbf{r}_{2}) + V(\mathbf{r}_{2},\mathbf{r}_{1}) ,$$

Ground and excited states energies of plasma-embedded td_{μ} molecular ion for different screening parameter along with the n = 1 threshold energies of t μ . Quoted results are in m.a.u.

D	tµ (n= 1)	td μ (J=0, v = 0)	td μ (J=0, ν = 1)
80	- 0.481874166748	-0.538594975	-0.488065358
100	- 0.471951457103	-0.528664171	-0.478140323
50	-0.462181262989	-0.518869867	-0.468363045
30	-0.449386465096	-0.506018492	-0.455551309
20	-0.433756779919	-0.490279822	-0.439888656
15	-0.418520153061	-0.474893060	-0.424606668
10	-0.389182419992	-0.445137640	-0.395145273
8	-0.368133808415	-0.423678964	-0.373979717
6	-0.334783387306	-0.389475264	-0.340399609
5	-0.309590742305	-0.363459345	-0.315000779
4	-0.274153085855	-0.326575303	-0.279231352
3	-0.220971475522	-0.270488395	-0.225474576
2.5	-0.183360941776	-0.230169921	-0.187411245
2.0	-0.134547882290	-0.176754630	-0.137964289
1.5	-0.071690979839	-0.105039966	-0.074215725
1.2	-0.029655544877	-0.052965468	-0.03145845
1.1	-0.0168475687	-0.035286667	-0.0183319
1.0	-0.00634745	-0.018756598	-0.00739
0.9	-0.000378	-0.0053050	-0.00046
0.89	-0.00016	-0.0042584	

Larger systems are better armed to survive screening

Chaotic Nuclei Screening Coulomb Barrier Lowered by 2 Orders of Magnitude

Enhancement factor as a function of incident center-ofmass energy for the D + d reaction (upper panel). The corresponding Σ^2/\bar{f}_e (stars) and a power-law fit (dashed line) (lower panel).

S. Kimura, A. Bonasera, PRL. 93.262502 (2004)

Nuclear potential energy curve in π -mesonic hydrogenic molecule, and ground-state vibrational wave function for the while r_1 and r_2 are the classical turning points. The bound state energy level is - ϵ .

Lowest-order Bethe-Heitler-type diagrams contributing to the process $e+p \rightarrow e+\mu^- + \mu^+ +$ "anything." The contribution of such diagrams to the cross section can be calculated in terms of structure functions W_1 and W_2 .

Lowest-order Compton-type diagrams contributing to the process $e+p \rightarrow e+\mu^- + \mu^+ + \text{"anything."}$

PROVISIONAL SUMMARIES

- Strong Langmuir turbulence and inelastic high energy REB offer new prospects for FIS/ICF.
- Pion catalyzed fusion could provide substantial contributions: cheaper, faster and No sticking.
- Discontinuous REB stopping through γ -and (e^+-e^-) pair productions remain to be explored.
- π^{-} stopping needs more investigation.

Production of Borromean molecular states via (e-e+) decay into Wheeler complexes ne-me+ and Pi- catalysis out of DT electro and photodisintegration (cone target)