

Uros Cvelbar

Jozef Stefan Institute, Slovenia

Building new catalytic sensors and devices with plasma nanostructuring and large-scale synthesis of nanowires

Sensors - Measurements of neutrals with nanostructured surfaces

CVELBAR, et al. [also selected as a topical article for the Aril 14, 2008 issue of Virtual journal of nanoscale science & technology]. *Appl. phys. lett.*, 2008, vol. 92, no. 13, str. 133505-1-133505-3

Applications

Nanowire array electrodes for electrochromics

Applications

Nanowire mat electrodes for electrochromics

Wavelength (nm)

bleached

Differences in the timescales of coloration and bleaching

Problem to solve

Synthesize large quantities of NW at small costs for satisfy future industrial needs!

Winner processes:

- **1. Fast process**
- 2. Cheap material in (powders) / out (NW)
- 3. Yield quantities
- 4. Efficient (and small) energy consumption
- 5. Pureness of material and new properties (crystallinity, p/n-type, etc.)
- 6. No post-processing, purification

3D problem: TIME – QUANTITY- QUALITY

Time consumption for processing

Plasma routes

Different plasma routes for nanostructuring and large – scale synthesis of nanowires

Case of <u>**IRON OXIDE**</u> and <u>**ZINC OXIDE**</u> – interest in sensors, solar cells, batteries or other photochemical and electrochromic applications

Evaporation/melting-plasma interactions-deposition

Liu et al. Adv. Mater. 2005, 17, 1893-1897. Ostrikov et al. 2007 Thin Solid Films 516, 6609-6615. Liu et al. 2003 J. Appl. Phys. 95, 3141-3147. Kumeta et al. 2009 Thin Solid Films 518, 3522-3525 Ono H et al. 2009 Thin Solid Films 581, 1016-1019 Baxter et al. 2003 Appl. Phys. Lett. 83, 3797-3799.

Hong et al. 2006 Phys. Plasmas 13, 063506. Hong et al 2006 Jpn. J. Appl. Phys. 47, 5940-5944.

Fe3O4 NW

(a)

ZnO NW

(b)

Ostrikov et al. 2007 Thin Solid Films 516, 6609-6615 Liu et al. 2003 J. Appl. Phys. 95, 3141-3147. Kumeta et al. 2009 Thin Solid Films 518, 3522-3525 Ono H et al. 2009 Thin Solid Films 581, 1016-1019 Baxter et al. 2003 Appl. Phys. Lett. 83, 3797-3799.

Liu et al 2005 Adv. Mater., 17, 1893-1897

Fe2O3 = O

applications by M. Meyyappan, MK Sunkara

Kumar V et al 2008 J. Phys. Chem. C 112, 17750-17754. Kim JH et al MK 2008 Informacije Midem 38, 237-243.

ZnO Nanowires

αFe2O3 Nanowires

αFe2O3 Nanowires

and Sunkara MK 2010 Nanoscale 2, 2012-2027

а

4. Direct plasma growth

Cvelbar

ZnO Nanowires

Sunkara

Solid-solid interface

Solid-liquid interface

Unpublished or hidden? 😳

5. Mixed plasma routes

Plasma-catalyst assisted + flight-thru

Plasma-catalyst assisted + flight-thru + PECVD

Time vs. Quantity (Fe oxide)

Iron Oxide NW

Time vs. Quantity (ZnO)

1. PECVD 10⁻⁹ – 10⁻⁴ g/min 3. Plasma flight-thru DC ===> 13 – 20 g/min (Mat.Sci. Eng. B 134(2006) RF 20 g/min, ratio l/d=14 [optimal] 37 g/min, ratio l/d=8 53 g/min, ratio l/d=2 (J. Phys. Chem. C 111(2007) MW **5g/min**, ration I/d=20 (J.Phys.Chem C (2008)) <20g/min (Midem Info 2008)

Time vs. Quantity (Zn oxide)

Quality

- Advanced properties of NW
- "Pure" structures / no impurities (in most cases)
- Dimensions, shapes, ratio I/d
- Process control

Advantages of plasma nanostructures

Why is plasma so important for nanostructure or NW growth? - SUPERSTRUCTURE

Prespectives & pros-cons

2. Plasma –catalyst assisted

1. PECVD

 Polycrystalline / crystalline NW Aligned array growth is difficult to achieve NW growth on substrate depends on the substrate Multiple step procedures Low energy efficiency per synthesized NW 	 Impure NW Multiple step procedures High temperatures needed for dissolvation of metal into catalyst for NW growth (e.g. 925C for Zn vapor dissolved into Au catalyst) High energy consumption / low energy efficiency per synthesized NW Growth limited by supplied catalyst
 Single-crystalline NW High amount of NW yield Particles mixed with NW – post-purification needed Difficult to control NW shape and ratio length/diameter Difficult to control morphology Synthesis smaller than second Influence of reactor size to feed and efficiency of conversion/syntheis Single-step procedure Good energy efficiency per synthesized NW 	 4. Direct plasma synthesis Single-crystalline NW Medium amount of NW yield No purification needed Good control of NW shape and ratio length/diameter Difficult to control nucleation Nucleation determines the number of NW Difficult to control aligment of NW Synthesis in order of seconds to minutes Single-step procedure Medium energy efficiency per synthesized NW