ITB oscillations: towards a limit cycle model

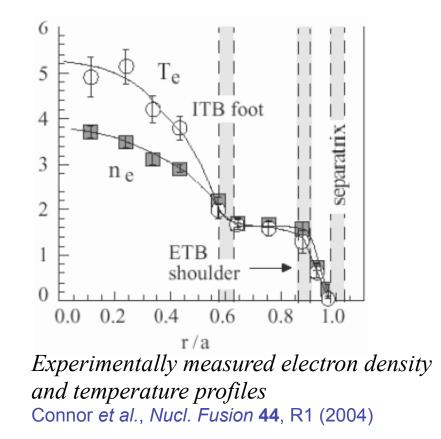
B. F. A. Silva, J. P. S. Bizarro, X. Litaudon, and N. F. Loureiro

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl.pt

FPPT-2011, Singapore (April 20, 2011)

Introduction What is an ITB ?

- An Internal Transport Barrier (ITB) is a localized region of improved particle and energy confinement that can appear in fusion devices.
- It gives rise to the local steepening of the pressure profile.
- It can induce a higher fraction of bootstrap current.

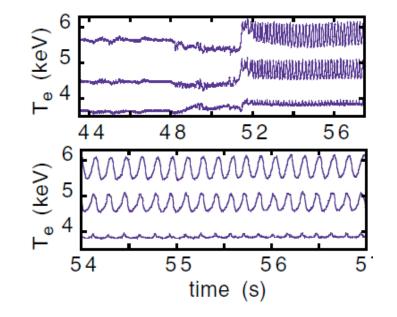


Introduction Why do ITBs exist ?

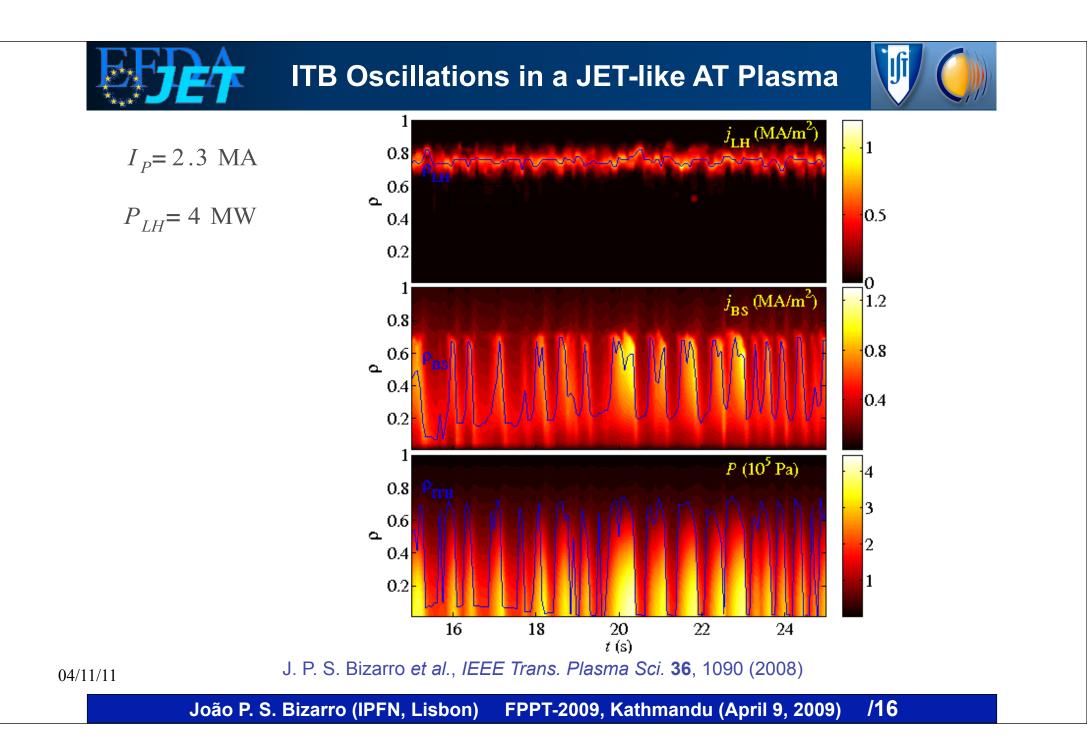
- ITBs are known to be associated with micro-turbulence reduction.
- There is yet no ultimate explanation for their appearance,
 - it is a complex issue depending on several factors: type of machine, transport channel, ...
- A widely accepted mechanism for the formation of electron ITBs is that:
 - an ITB is triggered when the plasma switches from a monotonic to a hollow q profile,
 - the ITB foot shares the location of the minimum in the q profile.

Introduction ITB oscillations

- Under certain conditions ITBs are seen to oscillate in time.
- It has been inferred that ITB oscillations could be the result of the nonlinear coupling between the pressure and current density profiles via the dependence of:
 - the **non-inductive current** on the **electron temperature gradient**,
 - the thermal diffusivity on the magnetic shear.



Time evolution of the electron temperature for a Tore Supra discharge Giruzzi *et al.*, *Phys. Rev. Lett.* **91**, 135001 (2009)



Our aim is to attempt to capture and understand the essential physics underlying ITB oscillations, so that robust strategies can be defined to effectively control them.

We adopt a simple **local (0-D) model**, derived from the **transport equations** under a set of **simplifying assumptions**.

We analyse its stationary solutions with different tokamak regimes in view: a **pure Ohmic regime**, a **non-inductive regime** and, possibly, an **oscillatory regime**.

Reduction Method Methodology

In order to reduce the standard 1-D transport equations for plasma energy and current,

$$\begin{cases} \frac{3}{2}n\partial_t T = \frac{1}{r}\frac{\partial}{\partial r}rn\chi\frac{\partial T}{\partial r} + S, \\ \mu_0\partial_t j = \frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial}{\partial r}\left[\eta\left(j - j_{\rm NI}\right)\right], \end{cases}$$

to a 0-D model, we Taylor expand the profiles around the ITB foot r_b , adopt a set of assumptions, evaluate the equations at the origin, and retain the information relative to these two points (the origin and the ITB foot).

Reduction Method Assumptions & Variables

In the reduction process, we adopt the following assumptions:

- T and j have null derivatives at the origin,
- T and j are constant at the ITB foot:

$$T(r = r_b) = T_b$$
 and $j(r = r_b) = j_b$

- n is flat for $0 < r < r_b$,
- j_{NI} is null at the origin,
- η is the Spitzer resistivity,

Variables of the model :

 T_0/T_b and j_0/j_b , where $T_0 = T(r = 0)$ and $j_0 = j(r = 0)$

Reduction Method Transport Model

Taking the above referred mechanism for ITB formation, we adopt the following criterium:

whenever the q profile becomes hollow (i.e., has a local minimum), an ITB sets in and the diffusivity drops from a typical low- to a high-confinement value:

$$\chi = \chi_{\text{High}} + (\chi_{\text{Low}} - \chi_{\text{High}})f(s)$$

where s is the magnetic shear and f models the transition from 0 to 1. We choose f to be the logistic function:

 $f(s) = 1/(1 + e^{-\alpha s})$

with α controlling the transition steepness.

Reduction Method *General Reduced system*

The reduced form of the transport equations is then given by

$$\begin{cases} \tau_x \dot{x} = -\frac{8}{3} \tilde{\chi}(x, y)(x - 1) + \tilde{S}_0, \\ \tau_y \dot{y} = \frac{4}{x^{3/2}} \left[-(y - 1) + \frac{3}{2} \frac{y}{x}(x - 1) - \tilde{S}_{\mathrm{NI}_b} \right], \end{cases}$$

where:

 $x = T_0/T_b$ is the dimensionless temperature inside the barrier, $y = j_0/j_b$ is the dimensionless current density inside the barrier, $\tau_x = r_b^2/\chi_{\text{Low}}$ is the transport time, $\tau_y = \mu_0 r_b^2/\eta_b$ is the resistive time, $\tilde{\chi}(x, y) = \chi_0(x, y)/\chi_{\text{Low}}$ is the dimensionless diffusivity, $\tilde{S}_0 = \tau_x S_0/(\frac{3}{2}nT_b)$ is the dimensionless heating power inside the barrier, $\tilde{S}_{\text{NI}_b} = j_{\text{NI}_b}/j_b$ is the fraction of non-inductive current at the barrier's foot

Reduction Method Heating & Current Drive

The system becomes:

$$\begin{cases} \tau_x \dot{x} = -\frac{8}{3} \left[\frac{\chi_H}{\chi_L} + (1 - \frac{\chi_H}{\chi_L}) f(y) \right] (x - 1) + C_x^{\text{ohm}} \frac{y^2}{x^{3/2}} + F_{\text{Ext}}^x (x, y) \\ \tau_y \dot{y} = \frac{4}{x^{3/2}} \left[-(y - 1) + \frac{3}{2} \frac{y}{x} (x - 1) - C_y^{\text{BS}} \frac{x - 1}{y + 1} - F_{\text{Ext}}^y (x, y) \right] \end{cases}$$

if the following different source terms are considered:

- The Ohmic heating: $S_0^{\text{ohm}} = C_x^{\text{ohm}} y^2/(x^{3/2})$
- The bootstrap current: $S_b^{BS} = C_y^{BS} (x-1)/(y+1)$
- The external heating power: $F_{\text{Ext}}^{x}(x, y)$
- The external non-inductive current fraction: $F_{\text{Ext}}^{y}(x,y)$

$$C_x^{\text{ohm}} = \tau_x \eta_b j_b^2 / (\frac{3}{2}nT_b) \qquad C_y^{\text{BS}} = \alpha_{\text{BS}} T_b / (r_b^{3/2} j_b^2)$$

Reduction Method *Parameters & External Sources*

Parameters

We choose parameters pertinent to Tore Supra, a machine particularly suited for long pulse operation:

 $T_b = 4 \ KeV, \ j_b = 1.5 \ MA/m^2, \ \rho_b = 0.2$

Choice of external sources

In order to model the external sources corresponding to a lower hybrid current drive (LHCD) system, we assume:

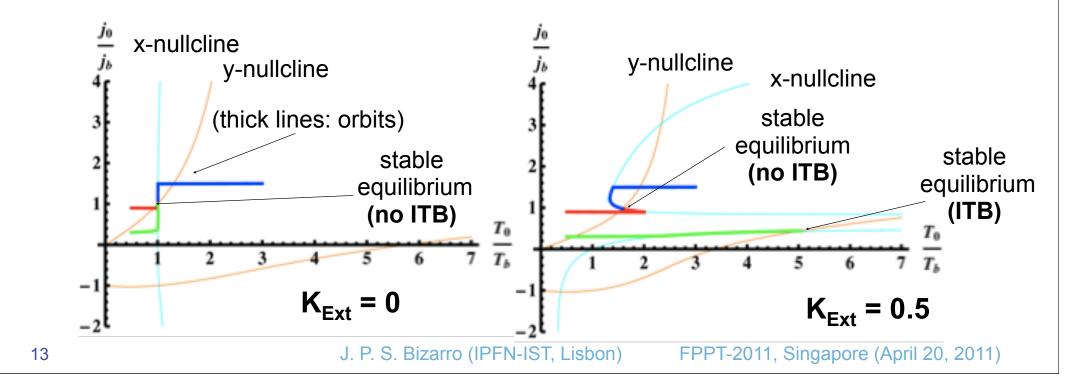
- a constant and well localized current deposition in r_b : $F_{Ext}^y(x, y) = K_{Ext}$
- a corresponding LH heating power in the plasma center, dependent on x and y: $F_{\text{Ext}}{}^{x}(x, y) = K_{\text{Ext}} x y$

$\mathbf{K}_{\mathsf{Ext}}$ is then the control parameter in our model.

Results Numerical integration

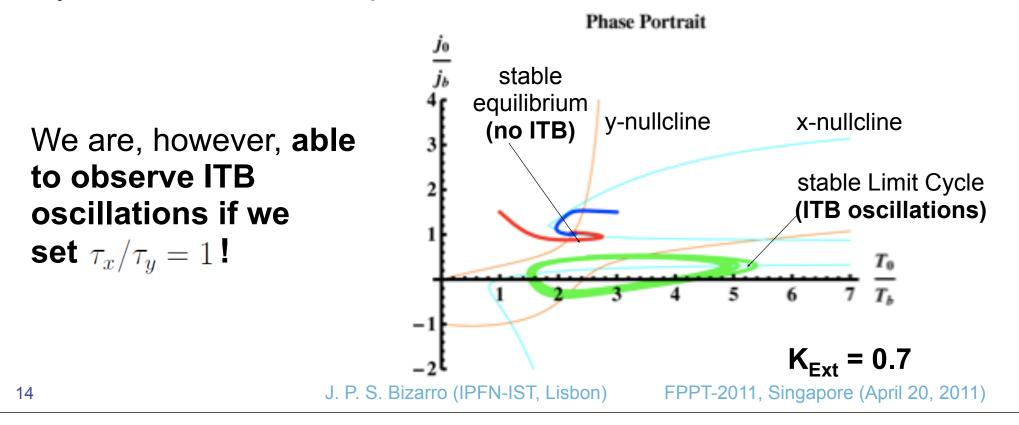
Numerical integration for two different values of K_{Ext} :

Given the remarkably distinct time-scales, $\tau_x/\tau_y = O(10^{-3})$, the orbits are rapidly attracted to the x-nullcline (line where $\dot{x} = 0$) and then approach the stable equilibria:



Results *Oscillatory regime*

- Precedent parameter values: no oscillations observed.
- Singular perturbation theory: there can be *relaxation oscillations* but nullclines' shape and relative position must be compatible. In our case, they are not favorable to periodic solution.



Conclusions

- Our model is consistent with experiments in the following points:
 - It captures a single equilibrium typical of a pure Ohmic regime (y ~ 1, x ~ 1) when no external sources are present - ITB absence;
 - –For an external non-inductive current above a critical value, an additional stable equilibrium appears, typical of a steady state, advanced tokamak regime (0 < y < 1, x >> 1) ITB presence;
 - –The coexistence of these two distinct stable equilibria is consistent with the fact that careful plasma preparation is required for long non-inductive operation.
- For the type of discharges considered, ITB oscillations are captured when the characteristic transport and resistive times are similar.