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1.
Title:
ESTIMATION OF UNCERTAINTY IN XRF ANALYSIS.

2.
Purpose:
To define the set of procedures for the estimation of the uncertainty of the results obtained by X-ray fluorescence spectroscopic methods and to give a step by step practical example for a specific application.

3.
Scope:
The scope of this procedure extends to all of the X-ray fluorescence methods implemented in the INSERT LABORATORY ACRONYM.

4.
Definitions:
Uncertainty: A parameter associated with the result of a measurement that characterises the dispersion of the values that could be reasonably attributed to the measurand.

Standard Uncertainty u(xi): Uncertainty of a measurement result xi, expressed as its standard deviation.

Combined Standard Uncertainty uc(y): Uncertainty of a calculated quantity y, which depends on several measured results or theoretical parameters xi and that is expressed as the result of propagation of the standard deviation of all the results xi.

Uncertainty Budget: List of sources contributing to the uncertainty of each of the measured values or parameters used in the calculation of the quantity y.

Expanded Uncertainty U(y): Uncertainty of a calculated quantity y, expressed as an interval comprising a large part of the probability distribution values yi that can be reasonably attributed to the result. U(y) is calculated by multiplying uc(y) by a coverage factor k, which selection is based in the type of probability distribution of values yi and the desired confidence level.

5.
References:
EURACHEM / CITAC Guide. Quantifying uncertainty in analytical measurement. QUAM:2000.P1



D. Wegrzynek, A. Markowicz, E. Chinea Cano, S. Bamford, Evaluation of the uncertainty of element determination using the energy-dispersive x-ray fluorescence technique and the emission-transmission method, X-Ray Spectrometry 32 (2003) 317-335.

                                      A.Markowicz, D. Haselberger, XRF analysis of intermediate thickness samples, IAEA TECDOC 1401, 35-43.  

6.
Responsibilities:
The INSERT LABORATORY ACRONYM Nuclear Instrumentation Specialist is responsible for the assessment of the uncertainty budget and for the estimation of the uncertainty of the results in the validation of any analytical instruction implemented in the INSERT LABORATORY ACRONYM. 



The Head of INSERT LABORATORY ACRONYM has the responsibility of reviewing the estimation of the uncertainty performed during method validation.



The Head of the Insert Unit or Department name has the responsibility to review and approving all the validated analytical instructions.

7.
Procedure:

7.1
General considerations to the estimation of uncertainty in XRF analysis.

In EDXRF practice the measurand is the mass fraction of a given element i (or of a group of elements), which is determined from the measured count rate of its characteristic radiation. The relationship between this signal and the mass fraction of the element i originating it depends not only on the selected experimental conditions but also on the sample matrix composition.

The experimental conditions include the characteristic radiation selected for the analysis; the energy probability distribution of the radiation selected for excitation; the detector efficiency and the geometric design. These factors influence on the obtained x-ray production and detection.

Besides that, additional corrections are needed to consider the x-ray attenuation and secondary enhancement effects in the sample. The first correction accounts for the attenuation of both the excitation radiation and the characteristic radiation Ei selected for the estimation of the mass fraction of the element i. As the sample attenuation depends on the matrix composition, this correction makes the expression relating the measured count rate not linearly dependent on the elemental mass fraction in the more general case, and the ideal estimation of this correction is in principle possible only if the sample composition is a priori well known, which is impossible in most of the cases. The correction for secondary enhancement effects accounts for the additional excitation of the element i by the characteristic emission of other elements present in the sample and by part of the initial excitation radiation that is scattered in the sample.

Most of the EDXRF analytical approaches are based on simplifications of this complex relationship (usually made by choosing special conditions for sample preparation / excitation) or on the use of empirical or theoretical methods to estimate sample attenuation.

Therefore the main advantages of EDXRF (simple sample preparation, high productivity and multi-elemental capability) are counteracted by the need of a thorough assessment of the uncertainty budget of the chosen analytical method, in order to provide an accurate estimate of the uncertainty of the provided results.

Whenever the theoretical model used to calculate the mass fraction is known, an accurate estimation of the uncertainty can be achieved by performing a thorough analysis of the uncertainty budget, allowing to estimate the uncertainty of each of the parameters included in the expression used to calculate the elemental mass fractions (theoretical model of the method) and followed by the a calculation of the combined uncertainty of the results based in the law of propagation of uncertainty. An example of the use of this “top-bottom” approach is attached to this procedure.

As in EDXRF a significant contribution to uncertainty is caused by that associated to counting statistics, the main advantage of using a top-bottom approach is obtaining an expression allowing to calculate the uncertainty for any mass fraction range.

However, in many cases the theoretical model used is very complex or unknown. Many commercial instruments are not provided with detailed specifications on the model used for calculations. In such cases, a simplified method can be used to calculate the combined uncertainty. By designing specific experiments that would serve to asses the uncertainty of sources affecting different components or comprising several sources affecting the measurand, the uncertainty due to a group-effect concept can be assessed, providing that no relevant sources are neglected.

It is worth to notice that the estimation based in group-effect approach reflects only the uncertainty for the mass fraction value and for the particular matrix of the used CRM. An expression relating the uncertainty with the mass fraction uc(wi)= f(wi) can be obtained by analyzing several CRM with different mass fractions.

7.2
The process of uncertainty estimation. In both of the above mentioned approaches the process of uncertainty estimation shall include the steps summarized in the flow chart provided in Figure 1.
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Figure 1. Main steps in uncertainty estimation

7.2.1
Specification of the measurand. The measurand in EDXRF is the element weight fraction, which is calculated from different measured and theoretical quantities. All of the input data that is supposed to be used for the quantification method have to be defined, and whenever possible, the theoretical model used for the quantification of the element weight fraction must be inspected. The latter results of special relevance to assess the method weaknesses during method implementation and validation and to foresee modifications aimed to method improvement. In Annex 1 is presented how the use of Bayesian statistics leads to a better estimation of the measurand when prior information exists on the interval within which the elemental mass fraction is supposed to be contained.   

7.2.2
Identification of the uncertainty sources. The main sources of uncertainty affecting each of the data components used in the quantification shall be 

identified. A cause – effect (or fishbone) diagram can be used for this purpose. An example of fish-bone diagram for the case of the analysis of trace elements in soils or sediments by using the matrix correction by normalizing the count rates of characteristic radiation to Compton scatter intensity is provided in Figure 2. 
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Figure 2. Cause-effect diagram for the case of analyzing trace elements in soils or sediments using Compton correction to compensate differences in sample attenuation (top-bottom approach)

A more detailed diagram, including the assessment of uncertainty due to the assumptions of the quantification model for the case of analyzing light matrix samples by using the emission-transmission method is provided in Annex 2. Another cause-effect diagram, corresponding to the uncertainty calculation in EDXRF analysis of intermediate thickness samples by the emission-transmission method, is presented in the practical example shown in Annex 3. The preparation of such diagrams is of great use for a top-bottom assessment of uncertainty.

When using the cause-effect diagrams to estimate the uncertainty, attention shall be paid to those sources that cancel out, or to sources affecting different quantities, and which can therefore be grouped. An example of cancellation of sources is the case of the method where correction for matrix x-ray attenuation is performed by normalizing analytic peak areas to Compton scatter peak area. The uncertainty in both peak areas due to variations in x-ray tube current is compensated, since both quantities are measured at the same time and affected in the same way.

An example of sources grouping is the case of the uncertainty due to random errors performed in some operational steps. Indeed, repeatability affects sample preparation, sample measurement and even quantification, so a general source can be defined as to comprise all of these sources under the concept of reproducibility, thus affecting mostly the precision of the method.
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The latter is particularly important in the case of using a group-effect approach. The cause effect diagram is created defining sources that are expected to bring most of the contribution to uncertainty, on the basis of reasonable assumptions or specific properties of the used instrument. The fish-bone diagram, provided in Figure 3 serves to illustrate this case.

Figure 3. Cause-effect diagram for the case of analyzing trace elements in soils or sediments using Compton correction to compensate differences in sample attenuation (group-effect approach)

7.2.3 Quantification of the uncertainty of each component. 

In the case of using the top-bottom approach, the uncertainty of each individual component is estimated based on fundamental concepts of x-ray spectrometry theory, by designing specific evaluation experiments or based in well-defined values. For example, the uncertainty of mass measurement using a precision balance can be assumed as the standard deviation of the last digits in the scale. The uncertainty in thin pellet area can be assessed as the standard deviation of observed losses of material at the perimeter of the prepared pellets. Examples of uncertainty estimation for different components using a detailed top-bottom approach can be found in Annex 2 and Annex 3. Annex 3 provides a step by step guide for uncertainty calculation using the simplified Sherman equation for the determination of elemental mass fractions in intermediate thickness samples by the emission-transmission method.

The uncertainty of each component in the case of group-effect approach can be estimated as the standard deviation of the replicate results of an experiment designed to reflect the effect of a particular source of uncertainty. The estimation of uncertainty resulting from random errors in all steps of the analytical method can be defined by the concept of reproducibility. For example, replicate measurements of a single sample pellet are supposed to reflect the uncertainty due to instability in x-ray tube flux or electronic processing (repeatability in measurement). If replicate pellets of a sample are measured, the uncertainty due to deviations in sample preparation will be also taken into account. If the measurements are carried out in different days and by different operators, a more overall estimation of uncertainty is achieved. The relative uncertainty due to reproducibility can be quantified from the standard deviation of the replicate results as
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(1)

An experiment designed to reflect the uncertainty due to reproducibility is supposed to comprise all of the sources of random errors during analytical performance. However, performing specific experiments aimed to the assessment of uncertainty due to a single component are of great value to evaluate the effect of each component on the method analytical performance.

The assessment of the uncertainty due to systematic bias resulting from the quantification model, matrix effects, the presence of instrumental blank signal or due to other sources, can be estimated from the standard deviation of the bias of the results (qi) of replicate analysis. Bias is defined as the difference between the obtained result (xi) and the certified value (xcert).
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The average relative bias (
[image: image5.wmf]q

)is defined as the difference between the mean result and the certified value:
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In XRF practice, different kind of bias can occur. The presence of instrumental background interference for a given element (e.g. excitation of this element in some of the construction materials of the spectrometer) will lead to a constant bias. An inaccurate correction of attenuation or secondary enhancement of the characteristic radiation in the sample can produce a bias that will vary proportionally with the mass fraction of the element.

This uncertainty cannot be neglected when the value of the observed bias is larger that the uncertainty of the certified value of the analyzed CRM (ucert).

The relative uncertainty due to bias can be quantified as
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(4)

The use of group-effect approach allows estimating the uncertainty for a given mass fraction range and matrix type. Any experiment designed to evaluate uncertainty shall be defined as to reflect both matrix type and expected mass fraction range of the elements of interest in the samples.

As a general rule, the use of CRM having certified values with relatively small uncertainties is recommended. Otherwise, the uncertainty of the bias will be enlarged by the uncertainty of the certified value.

7.2.4 Quantification of the combined uncertainty.

The calculation of the combined uncertainty is based on the law of propagation of uncertainties. For components that are independent, such propagation is based on 
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where 
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 , Ci is a sensitivity coefficient evaluated as 
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, the partial differential of y with respect to xi, and u(y,xi) denotes the uncertainty in y arising from the uncertainty in xi.

For components that can not be considered as independent, the propagation is more complex:
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where 
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 is the covariance between components xi and xk. The covariance is correlated to the correlation coefficient as 
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When an uncertainty contribution is related with the whole procedure, or when the uncertainty on a component is expressed in terms of its effect on y, the sensitivity coefficient
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For expressions involving simple mathematic operations, the basic propagation rules are applied:
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In the case of group-effect approach, the combined uncertainty shall be calculated by simple propagation of uncertainties. At least the uncertainties due to precision and bias must be considered:
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7.2.5 Quantification of the expanded uncertainty.

The expanded uncertainty is calculated by multiplying the value of the combined uncertainty by a coverage factor k, which is selected based on the probability distribution of results and the desired confidence level, for example: if a normal distribution is assumed  k=2 represents a confidence level of about 95%.

8.
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9.
Appendix:

· Annex 1. Use of Bayesian statistics for a better estimation of the measurand in EDXRF analysis.

· Annex 2. D. Wegrzynek, A. Markowicz, E. Chinea-Cano and S. Bamford, Evaluation of the uncertainty of element determination using the energy-dispersive x-ray fluorescence technique and the emission–transmission method, X-Ray Spectrom. 32 (2003) 317–335.

·  Annex 3. Step by step methodology for uncertainty calculation in EDXRF analysis of intermediate thickness samples by the emission-transmission method.

Annex 1. Use of Bayesian statistics for a better estimation of the measurand in EDXRF analysis 

1. Introduction to Bayesian statistics in measurements
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The basic difference between conventional and Bayesian statistics lies in the different use of the term probability. Considering measurements, conventional statistics describes the probability distribution            , i.e. the conditional distribution of estimates y given the true value η of the measurand Y. Since the true value of a measurand is principally unknown, it is the basic task of an experiment to make statements about it. Bayesian statistics allows the calculation of the probability distribution            of the true value η of a measurand Y given the measured estimate y. The measurement uncertainty is based on the distributions               and              . These implicitly depend on further conditions and information such as the model, measurement data and associated uncertainties. 
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In order to establish             , one uses an approach, which separates the information about the measurand obtained from the actual experiment from other information available about the measurand: 
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is the probability distribution that the measurand Y has the true value η if only the measured value y and the associated uncertainty u(y) are given. It only accounts for the measured values and neglects any other information about the measurand. f (η) represents all the information about the measurand available before the experiment is performed. Therefore, it does not depend on y. C is a normalization constant.

If, for instance, the element mass fractions in a sample is the measurand, there exists the meaningful information that the measurand is non-negative (η ≥ 0) before the measurement is carried out. This yields for [image: image23.wmf])
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It is important to realize that the actual result y of a measurement, for instance a net count rate, can be negative. But the experimentalist knows a priori without performing an experiment that the true value η is nonnegative. On the other side, all non-negative values of the measurand have the same a priori probability if there is no other information about the true value of the measurand before the measurement has been performed.
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in essence considers the experimental information, the expectation

                  and the variance                   should hold true for the probability distribution  [image: image26.wmf])
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The probability distribution              can be determined by applying the principle of maximum (information) entropy S:
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This equation can be solved with the constraints                    and                                        by the method of Lagrangian multiplicators and one obtains the following result:

[image: image75.wmf]ò

×

×

=

×

=

q

q

q

p

q

q

p

q

q

p

q

q

p

d

x

p

x

p

x

p

x

p

x

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

 

 

(


[image: image76.wmf]))

/(

)

)(((

2

/

1

(

2

2

2

1

)

,

(

)

 

 

(

u

x

e

u

u

x

N

x

p

q

p

q

q

-

-

×

=

=


As it is possible to appreciate, the distribution             is a product of the model prior 
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and a Gaussian  N(y, u(y)), i.e. a truncated Gaussian. It is important to realize at this point that the Gaussian in the former equation is not an approximation as in conventional statistics or a distribution of measured values from repeated or counting measurements. It is instead the explicit result of maximizing the information entropy and expresses the state of knowledge about the measurand Y. 

[image: image77.wmf]1

)

 

 

(

=

ò

D

q

q

p

d

x


[image: image78.wmf]corr

i

i

i

Ab

B

I

m

S

,

=

After               is obtained, the Bayes theorem also allows the calculation of the probability distribution                  of an estimate y given the true value η of the measurand Y  by using the equation:

[image: image79.wmf]e

m

E

E

corr

Ei

E

i

m

Ab

-

×

Y

×

+

Y

×

-

×

Y

×

+

Y

×

=

1

)]

csc(

)

csc(

[

2

)

(

1

)

(

2

)

(

1

)

0

(

0

)]

csc(

)

csc(

[

m

m

m

m


The distribution 
[image: image28.wmf])

 

 

f(

y

 is uniform for all possible measurement results y, and 
[image: image29.wmf])

 

 

f(

h

 is uniform for all η ≥ 0. Thus, 
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 is obtained by approximating the now not available u(y) by a function û2(η): 
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The probability distribution 
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is a Gaussian for a given true value η of the measurand with the standard uncertainty û(η). The true value η  of the measurand Y is now a parameter in the former equation and the variance u2(y) of the probability distribution                equals the variance û2(η) of the probability distribution              :


2. Calculation of standard uncertainties as a function of the true value of the measurand

The standard uncertainty of the measurand is needed as a function û(η) of the true value η ≥ 0 of the measurand. This function has to be determined in a way similar to u(y) within the framework of the evaluation of the measurements by application of the GUM. In most cases, û(η) has to be formed as a positive square root of a variance function û2(η)calculated first. This function must be defined, unique and continuous for all η ≥ 0 and must not assume negative values.

3. Practical use of the Bayesian approach in a better estimation of the measurand in XRF analysis

In general, Bayesian methods are increasingly being used with success in experimental sciences. As it was explained above, these methods are particularly well suited to incorporate available prior information into the analysis of the experimental quantities, providing a powerful and flexible tool, essential in several scientific areas. Bayesian Statistics provides a more intuitive assessment procedure, closer to the thinking of the scientist than classical methodologies.

It is known that any measurement result is in general a point estimate of the measured quantity (measurand), the true value of which remains unknown. Therefore, a set of plausible values of the measurand around the estimate should be appraised. Under symmetry assumptions, this may be described by the standard deviation of a probability density describing the remaining uncertainty with respect to the true (unknown) value of the measurand (uncertainty of measurement).

In the case of analytical determinations by EDXRF, the uncertainty has an intrinsic component due to the counting rate that becomes increasingly important as the elemental mass fraction in the sample is lower. Other components are associated to the rest of magnitudes involved in the measurement, such as detector calibration, sample mass and correction factors.

According to Bayesian Statistics, the knowledge of prior information on the quantity of interest (elemental mass fraction in the sample) may be combined with experimental data to obtain a better estimator of the quantity of interest than that obtained from a classical use of the experimental data.

The Bayesian statistics can be applied to study how the experimental data are modified when the analyst has been informed about an elemental mass fraction interval in which the true value of the measurand is supposed to be included. This is the case, for example, in Proficiency Tests where an information interval (on the elemental mass fraction interval) is given to the participant when samples are distributed. The inclusion of the information interval is common practice for some Proficiency Tests providers to ensure the participants that the sample characteristics conform to their routine analysis.   

The analytical results produced by the laboratories can be modified (to improve its quality) when this prior information is incorporated into the statistical model for assessment. 

3.1 Distribution of the elemental mass concentration

Any statistical procedure requires a model which describes the probabilistic relationship between the observations and the quantity of interest (in this case the elemental mass fraction in a sample). As it was shown before, to this model the Bayesian approach adds a prior distribution which consider whatever prior knowledge is available on the true value of the measurand. In this case, observations are assumed to have a normal distribution centred at true value of the quantity of interest, which is assumed to belong to a particular finite interval. 

Let x denote the laboratory measurement result, corresponding to the elemental mass fraction in the sample, and let u the deviation which models the corresponding measurement uncertainty (which is assumed to be known). The pair (x,u) is the information determined by the laboratory. Let  є Θ be the actual (unknown) element mass fraction; this is the quantity of interest. From the Bayesian point of view, there exists a probability density π() (which is a rational measure of uncertainty about the value of , not a description of any frequentist variation, which encapsulates all available information about its value before the measurements are made. After the observation of x this probability distribution is updated, via Bayes theorem to the posterior distribution  π(x). This distribution combines the information about  contained in the data with the prior information contained in π().

Moreover, it is possible to specify the conditional probability density of the observation x, denoted by p(x), by using a probability model which takes into account the physical process which generates the experimental data x for any given  .  

By Bayes theorem, the information about the value of  after the experimental result has been obtained x is described by the corresponding posterior distribution π(x) given by 


This combines the information about  contained in the data x with the information  about  contained in the prior distribution π().

To obtain an explicit expression for π(x), both p(x) and π() must be specified. In the problem we are interested in, the variation of the measurement x around the true value of the elemental mass fraction  is due to many (essentially independent) causes. Assuming this, by the central limit theorem, it is reasonable to assume that x is normal distributed, that is 


Thus, since u is assumed to be known, the posterior distribution of the activity becomes
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The prior information available by the laboratory about the elemental mass concentration in the sample is a reference interval  = [m,M] in which the true value of the element mass concentration is included, so that it is known that m ≤  ≤ M.  As referred before, this interval can be (for example) the one informed by Proficiency Test providers to the participant laboratories in order to indicate the elemental mass concentration level in the sample. 

Since there is no reason a priori to assume that some parts of  are more likely to contain  than others, it seems reasonable to assume a uniform prior distribution for  over this interval, so that
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This prior distribution precisely describes that the only available information about the value of   is that it lies within the interval  = [m,M].

The equation for  π(x) takes the form:
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Since for any normal density N(x|, u) = N(|x, u), the former equation may also be expressed as
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Hence, the resulting posterior distribution π(x) is a truncated normal, that vanishes outside the interval , and is normalized inside the interval, so that                      .A limit case of this distribution is the situation  = (−∞,∞), that is, when no prior knowledge about the elemental mass concentration value is considered. Some information is however always available about the value of the measurand (since the elemental mass concentration is a positive quantity, Wi ≥ 0, and the number of atoms of the element in a sample cannot be infinite), though this information is (almost) never utilized. This corresponds to the classical treatment of the experimental data, that implicitly ignores the additional knowledge about the limited value of elemental mass fraction in the sample, what in turn directly leads to the classical result, the normal probability distribution π(x)= N(x,u). This may occur even when prior information is considered, if the interval is large enough. The difference between π(x) and the normal (not truncated) distribution becomes relevant when the interval is small enough, so that it provides significant information not contained in the normal distribution itself. 

3.2 Posterior expectation of the elemental mass concentration 

The posterior density, π(x), describes all available information about the value of the true elemental mass fraction , combining prior knowledge and experimental information. However, it is required to obtain a point estimator of , which act as summary of the information contained in π(x) . In other words, a single value must be obtained as a result that combines the experimental data and our prior knowledge. Being the posterior distribution π(x), the result is simply the expected value of . Since the posterior expectation of  is Bayesian modification of the initial experimental value x, we will denote this expectation as xB. This may be computed as the ratio of two integrals as follows:
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With an appropriate change of variables, the integral in the denominator of the former equation may be written in terms of the error function as:
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where erf(z) is the error function defined as:
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With a similar change of variables, the integral  
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 may be written in terms of the last result as:
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Therefore substituting the integrals in the expression of xB one has:
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The expression xB = x + ε can be interpreted as follows; with quadratic loss, the best point estimator xB of the element mass fraction  (when the prior information is known) is equal to the initial experimental value x, modified by a perturbation ε that contains the prior information available on the true value of the element mass fraction.

In general, the term ε tends to correct the asymmetric shape of the distribution, allowing to determine a value xB better centered in the interval of possible  values than the conventional estimator, the initial data x. It can be demonstrated that this correction will improve the estimate x directly obtained from the data, giving a value xB which in most cases will be closer to   than x. Only when x lies between  and the middle point of the interval, the value xB will not improve, most probably the result will stay essentially unaltered, as the correction is zero for values x placed in the middle of the interval. 

Annex 3. Step by step methodology for uncertainty calculation in EDXRF analysis of intermediate thickness samples by the emission-transmission method

1. Introduction

X ray fluorescence (XRF) analysis refers to the measurements of characteristic X rays resulting from electrons filling the inner shell vacancies produced in the sample by means of a suitable source of radiation. Energy dispersive XRF (EDXRF) measures the energy of the emitted X rays by collecting the ionization products induced in a solid state semiconductor detector. On their pathway through the sample, the exciting radiation and the emitted radiation are attenuated.

The analysis of trace element concentrations by EDXRF has been widely used in numerous applications, an example of these are the studies related to the environment.  The qualitative and quantitative analysis of samples by EDXRF comprises some advantages that justify its application by a great number of analytical laboratories carrying out inorganic analysis.   Among the advantages it is possible to find the following:

- the express and non destructive character of EDXRF in the majority of analytical applications,

-  it is a fast method for determining the presence of each chemical element through the precise identification of the lines corresponding to its excited characteristics radiations,

- the possibility of determining concentrations for a wide range of chemical elements just in one analytical determination, depending on the used excitation source,

-  the appropriate reproducibility and trueness of this analytical technique,

- there are lower risks of contamination when compared with other techniques,

-  the cost of the analytical determinations is low, compared with other analytical methodologies of similar capability.

However, EDXRF has some disadvantages that limit or condition its application field. In this sense, the main aspects necessary to consider are:

- the impossibility of determining chemical elements with low atomic number , not only associated to the low efficiency of most commercial detectors for energies below 1.74 keV, but also  due to the low yield of light elements.

- the complex dependence of the mass attenuation coefficients for the energies corresponding to the characteristic radiations,

- the complex relationship between the intensity of counts, associated to the selected characteristic radiation,  and the concentration of the chemical element in the sample.

The useful measured parameter in EDXRF is the Fluorescence Intensity. The induced Fluorescent Intensity of a given element line Ii(Ei), originated from the exciting radiation of intensity I0, can be expressed as a function of the sensitivity Bi, the Absorption Abcorr and the mass fraction mi through the following relationship:
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Then mi can be written as:
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When monochromatic radiation is used to excite the characteristic X-rays of an element i  in a complete homogeneous sample of thickness T (cm) and when enhancement effects are neglected, Ii(Ei) is described by the Sherman equation:
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where  
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For their analysis by EDXRF, the samples are categorized in thin, intermediate and thick samples by their attenuation factor. Depending on the sample thickness, different simplifications of the former equation can be applied. It is known that, for intermediate-thickness samples, the total mass per unit area m fulfill the relation:  
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where mthin and mthick are the values of mass per unit area for thin and thick samples, respectively. They are defined by:
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where (E0) and (Ei) are the total mass attenuation coefficients for the whole specimen at the energy of incident radiation (E0) and characteristic radiation (Ei );  1  and 2  are the effective incident and take off angles,
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The determination of element mass concentration in intermediate-thickness samples by EDXRF has the following characteristics:

- remaining uncertainties about mass-attenuation coefficients have a smaller effect on the results,

- less material is required,

- the sensitivity is more favorable for Low-Z elements

- secondary enhancements effects are less relevant.

2. The Emission-Transmission method

One of the most commonly used methods in quantitative EDXRF analysis of intermediate-thickness samples is the emission-transmission (E-T) method in which the specific X-ray intensities from a sample are measured successively with and without a multielement target positioned adjacent to the back of the sample in a fixed geometry.


In the absence of enhancement effects and assuming monochromatic excitation, the mass per unit area of the i-th element, mi, for homogeneous intermediate thickness samples, can be calculated by the following approximation of the Sherman equation: 


where  Ii,s is the intensity of line i from the sample alone, Bi is the sensitivity factor and Abcorr is the absorption correction factor. Explicitly, Bi and Abcorr can be calculated through the following relationships:



However, it is possible to obtain also experimental estimates of Bi and Abcorr. Bi can be determined as the slope of the straight calibration line for the i-th element obtained with thin homogeneous samples, or semi empirically based on both the experimentally determined GI0(E0) value and the relevant fundamental parameters. Abcorr  can be determined measuring the X Ray intensities with and without the specimen, from a thick multielement target located at a position adjacent to the back of the specimen (pressed pellet).  Abcorr can be expressed as:    
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where Ii,T is the intensity of line i from the sample plus target and  Ii,0 is the intensity of the target alone.  

Finally, the concentration of the i-th element Wi is calculated from: 


[image: image52.wmf]prep

corr

i

s

i

i

F

Ab

m

B

I

W

×

×

×

=

,


This equation includes the correction factor Fprep related to sample preparation.

In general, the emission-transmission method can be applied for quantitative XRF analysis of various materials, including samples of environmental, biological and geological origin (e.g., soil, sediments, plants, air particulates collected on filters, etc.). 

3. Methodology of uncertainty calculation

This methodology consists of the step by step procedure for uncertainty calculation according to the ISO Guide to the Expression of Uncertainty in Measurement (GUM). 

3.1.Definition of the measurand

The average mass fraction of the analyte element in a specific matrix constitutes the measurand. As shown before, the mathematical expression for the measurand (simplified measurand model) is: 
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3.2. Identification of uncertainty sources

The analysis of samples by EDXRF, using the E-T method, is a sequential process consisting of a few stages, such as:

· preparation of the calibration standards,

· preparation of the analyzed sample,

· irradiation of the calibration standards,

· irradiation of the sample and measurements of the characteristic x-rays,

· additional transmission measurements,

· processing the collected X ray spectra and calculating the net peak areas,

· establishing the necessary parameters of the measuring system,

· establishing the calibration curve and

· establishing the absorption correction factor.

From these stages, the following realistic uncertainty sources can be identified:

· calibration of the EDXRF spectrometer (performed by using pure element folis or pellets prepared from pure compounds),

· instability of the EDXRF spectrometer including both detector and electronics,

· sample preparation (considering the heterogeneity of the material to be analyzed and the non-uniformity of sample thickness), 

· spectral data processing with fitting programme,

· quantification (determination of the absorption correction factor) and

· uncertainty in determination of total mass per unit area.

In figure 4 a cause-effect diagram (fish-bone) shows the identified uncertainty sources.

3.3. Quantification of uncertainty components

-  Calibration of the EDXRF spectrometer

The calibration is performed by using single element foils or intermediate thickness pellets prepared from pure compounds. Based on the measurements, the sensitivity factors can be calculated for 7-15 elements as the ratio of the intensity of the characteristic X rays of the element of interest to the mass per unit area of that element in the calibration sample, corrected (if necessary) for the matrix absorption effects. The uncertainties of the experimental values for the sensitivity factors are calculated including the uncertainties of the characteristic X rays intensities, uncertainties of the mass per unit area of the element in the calibration sample and uncertainties of the absorption correction factor. For each experimental point, the uncertainty has to be estimated. In the next step, a calibration curve for the calibration factor vs. atomic number of the element has to be defined, based on the least squares fitting procedure. Finally, the uncertainty of the calibration of the EDXRF spectrometer is calculated as the root mean square (rms).

- Instability of the EDXRF spectrometer

The instability of the EDXRF spectrometer can be evaluated from the results of a specified number of repetitive measurements of a Fe metal foil performed during 9 hours in a day at fixed time intervals. The mean value of the peak area for the Fe-K line and its uncertainty (standard deviation) are calculated. After subtraction of the contribution of counting statistics, the uncertainty due to the instability of the EDXRF spectrometer can be found.

- Sample preparation

Uncertainty due to heterogeneity of the sample can be evaluated using a defined number of sub-samples taken at random from the sample material.

Uncertainty due to non-uniformity of the sample thickness can be estimated as the standard deviation from replicate measurements. If replicate pellets of a sample are measured, the uncertainty due to deviations in sample preparation (sample thickness) is taken into account 

- Spectral data processing with fitting programme

Least-squares fitting procedure (AXIL) gives net peak areas and their uncertainties (both in counts).

- Quantification

Uncertainty in determination of the absorption correction factor Abcorr is due to the uncertainties of the intensities of the characteristic X rays Ii,s, Ii,T, and Ii,0. The uncertainty of Abcorr is calculated based on the law of uncertainty propagation applied to its corresponding equation.
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     with  A = H-1  and 
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- Uncertainty in determination of total mass per unit area

The total mass per unit area is determined by the following equation:
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where  pm is the pellet mass and pA is the pellet area. 

The uncertainty of the total mass per unit area can be calculated as:
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upm depends on the used analytical balance (when a precision balance is used, it can be assumed as the standard deviation of the last digits in the scale) and upA considers the standard deviation of the observed losses of material at the perimeter of the prepared pellets. Generally, the uncertainty of um can be considered negligible.

3.4. Conversion of uncertainties to standard uncertainties

Before its combination, it is important to convert the obtained uncertainties to standard uncertainties.

3.5. Calculation of combined uncertainty

The determination of combined uncertainty is based on the law of uncertainty propagation applied to the measurand equation.
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3.6. Calculation of expanded uncertainty

The expanded uncertainty U is determined as follows:

Where k is the coverage factor. Assuming a normal distribution:

k = 1, gives a level of confidence of approximately 68.3 %

k = 2, gives a level of confidence of approximately 95.5 %

k = 3, gives a level of confidence of approximately 99.7 %

3.7. Expression of results

The result corresponding to the elemental mass fraction determination is reported as expanded uncertainty U with the following format:

Result = (Wi ± U)   [units]

The value of k, and the confidence level associated to the Wi ± U interval, is always reported.
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Figure 4. Cause-effect diagram (fishbone) corresponding to the measurement of intermediate thickness samples by EDXRF using the emission-transmission method.
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