Comparison between the SMM and GEMINI++ de-excitation models

D. Mancusi¹ J. Cugnon¹ A. Boudard² S. Leray² A. Botvina³ R. Charity⁴

¹IFPA, University of Liège, Belgium

²SPhN, IRFU, CEA, Saclay, France

³Reactions and nuclear astrophysics, GSI, Darmstadt, Germany

⁴Department of Chemistry, Washington University, St. Louis, MO, U.S.A.

5th May 2009 — Satellite Meeting on Spallation Reactions AccApp'09, Vienna (Austria)

Outline

Physical ingredients

- Cascade stage
- De-excitation stage

2 Results

- Residue cross sections
- Neutron spectra
- Light clusters

3 Conclusions

INCL4.5

Features

- INCL
- Developed by ULg@Liège, CEA@Saclay
- Binary nucleon-nucleon collisions
- Nucleus (remnant) left in an excited state
 - Must be coupled to a pre-equilibrium / de-excitation code

Université de Liège

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INCL4.5

Results

Features

- INCL
- Developed by ULg@Liège, CEA@Saclay
- Binary nucleon-nucleon collisions
- Nucleus (remnant) left in an excited state
 - Must be coupled to a pre-equilibrium / de-excitation code

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Université de Liège

The SMM model

SMM = Statistical Multifragmentation Model

- Simultaneous break-up
 - Thermodynamical configuration weights
 - Remnant splits in several "chunks"
- Fragment de-excitation
 - Fermi break-up
 - Evaporation $Z \leq 2$ (Weisskopf-Ewing)
 - Fission (Bohr-Wheeler)

The SMM model

SMM = Statistical Multifragmentation Model

- Simultaneous break-up
 - Thermodynamical configuration weights
 - Remnant splits in several "chunks"
- Fragment de-excitation
 - Fermi break-up
 - Evaporation $Z \leq 2$ (Weisskopf-Ewing)
 - Fission (Bohr-Wheeler)

The GEMINI++ model

- No simultaneous break-up
- Sequence of binary decays
- Evaporation $Z \leq 3$ (Hauser-Feshbach)
- Asymmetric fission Z > 3 (Moretto)
- Symmetric fission (Bohr-Wheeler)

The GEMINI++ model

- No simultaneous break-up
- Sequence of binary decays
- Evaporation $Z \leq 3$ (Hauser-Feshbach)
- Asymmetric fission Z > 3 (Moretto)
- Symmetric fission (Bohr-Wheeler)

1-GeV p + ⁵⁶Fe

1-GeV p + ⁵⁶Fe

1-GeV p + ⁵⁶Fe

P. Napolitani et al., PRC70 (2004)

SMM improves with pre-equilibrium

IMF production

- $SMM \rightarrow multifragmentation$
- GEMINI++ → asymmetric fission
- The question is not settled

1-GeV p + ⁵⁶Fe

P. Napolitani et al., PRC70 (2004)

SMM improves with pre-equilibrium

IMF production

- SMM \rightarrow multifragmentation
- GEMINI++ → asymmetric fission
- The question is not settled

g

1-GeV p + ⁵⁶Fe

Results

Conclusions

1-GeV p + ⁵⁶Fe

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日本 のへで

g

Results

Conclusions

1-GeV p + ²⁰⁸Pb

Results

Conclusions

1-GeV p + ²⁰⁸Pb

Results

Conclusions

1-GeV p + ²⁰⁸Pb

g

1-GeV p + ²⁰⁸Pb

1-GeV p + ²⁰⁸Pb

1-GeV p + ²⁰⁸Pb

g

Results

Conclusions

1-GeV p + ²³⁸U

<□> <@> < E> < E> E| = のQC

Results

Conclusions

1-GeV p + ²³⁸U

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Results

Conclusions

1-GeV p + ²³⁸U

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Results oooooooooooooooooooooooo

Conclusions

1-GeV p + ²³⁸U

No break-up in Pb and U!

Results

Conclusions

1-GeV p + ²³⁸U

g

Results

Conclusions

1-GeV p + ²³⁸U

・ロト ・ 個 ト ・ 目 ト ・ 目 = つ へ C

g

Results

Conclusions

1-GeV p + ²³⁸U

g

1-GeV p + ²³⁸U

• GEMINI++ has good fission and spallation yields

- SMM less good for fission
 - SMM prefers pre-equilibrium + de-excitation
- IMF production mechanism?

- GEMINI++ has good fission and spallation yields
- SMM less good for fission
 - SMM prefers pre-equilibrium + de-excitation
- IMF production mechanism?

- GEMINI++ has good fission and spallation yields
- SMM less good for fission
 - SMM prefers pre-equilibrium + de-excitation
- IMF production mechanism?

- GEMINI++ has good fission and spallation yields
- SMM less good for fission
 - SMM prefers pre-equilibrium + de-excitation
- IMF production mechanism?

Results ______

1.2-GeV p + ²⁰⁸Pb

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ▼ ◇ ◇ ◇

In short

SMM spectra look too cold ... pre-equilibrium might help

ъ

63-MeV p + ²⁰⁸Pb (low energy)

63-MeV p + ²⁰⁸Pb (low energy)

1.2-GeV p + ¹⁸¹Ta (high energy)

ъ

э

1200 MeV p + ta181, t spectra

Results

• Low-energy LCP yields are insensitive to de-excitation

- Very little ³He in de-excitation
- GEMINI++ sensibly better than SMM
 - No multifragmentation More accurate evaporation mod

- Low-energy LCP yields are insensitive to de-excitation
- Very little ³He in de-excitation
- GEMINI++ sensibly better than SMM
 - No multifragmentation
 - More accurate evaporation model

- Low-energy LCP yields are insensitive to de-excitation
- Very little ³He in de-excitation
- GEMINI++ sensibly better than SMM
 - No multifragmentation
 - More accurate evaporation model

- Low-energy LCP yields are insensitive to de-excitation
- Very little ³He in de-excitation
- GEMINI++ sensibly better than SMM
 - No multifragmentation
 - More accurate evaporation model

- Low-energy LCP yields are insensitive to de-excitation
- Very little ³He in de-excitation
- GEMINI++ sensibly better than SMM
 - No multifragmentation
 - More accurate evaporation model

• SMM needs a pre-equilibrium model

- GEMINI++ has accurate physics
 but it is ~20 times slower than SMM
- IMF production could be improved

- SMM needs a pre-equilibrium model
- GEMINI++ has accurate physics
 - ... but it is ~20 times slower than SMM!
- IMF production could be improved

- SMM needs a pre-equilibrium model
- GEMINI++ has accurate physics
 - ... but it is \sim 20 times slower than SMM!
- IMF production could be improved

- SMM needs a pre-equilibrium model
- GEMINI++ has accurate physics
 - ... but it is ~20 times slower than SMM!
- IMF production could be improved

The end

Thank you for your attention!

1-GeV p + ⁵⁶Fe

1-GeV p + ⁵⁶Fe

ber

1-GeV <u>p</u> + ⁵⁶Fe

・ロト (個) (E) (E) (E) (E)
 ・(E) (E) (E) (E)

lumber

1-GeV<u>p+²⁰⁸Pb</u>

1-GeV p + ²³⁸U

1-GeV p + ²³⁸U

・ロト ・四ト ・ヨト ・ヨ

문 권

s Number

1.2-GeV p + ²⁰⁸Pb

