Industrial Electron Beam Processing

Overview of the Document

Tony Berejka, Ionicorp+
Huntington, New York, USA

Marshall R. Cleland, IBA Industrial, Inc.
Edgewood, New York, USA

IAEA/ANS AccApp ’09
Vienna, Austria
7 May 2009
Industrial Electron Beam Processing

Document sources:

1 – IAEA Industrial Irradiation of Polymers: Status and Prospects Report – August 2005

2 – Industrial Applications of Electron Accelerators: CERN Accelerator School – 24 May to 2 June, 2005

3 – IAEA Consultants Meeting – July 2008
Industrial Irradiation Processing

Status and Prospects – 2004

Anthony J. Berejka
4 Watch Way; Huntington, NY 11743, USA
Phone/fax: 1-516-549-5517
E-mail: berejka@msn.com

Outline

<table>
<thead>
<tr>
<th>Topic</th>
<th>pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>1-2</td>
</tr>
<tr>
<td>Status of Industrial Equipment and Facilities</td>
<td>3-15</td>
</tr>
<tr>
<td>High-Voltage Accelerators</td>
<td>3-5</td>
</tr>
<tr>
<td>Principles of operation</td>
<td></td>
</tr>
<tr>
<td>Industrial usage</td>
<td></td>
</tr>
<tr>
<td>Sources for x-ray conversion</td>
<td></td>
</tr>
<tr>
<td>Mid-Voltage Accelerators</td>
<td>6-9</td>
</tr>
<tr>
<td>Principles of operation</td>
<td></td>
</tr>
<tr>
<td>Industrial usage</td>
<td></td>
</tr>
<tr>
<td>Low-Voltage Accelerators</td>
<td>9-11</td>
</tr>
<tr>
<td>Principles of operation</td>
<td></td>
</tr>
<tr>
<td>Equipment innovations</td>
<td></td>
</tr>
<tr>
<td>Industrial usage</td>
<td></td>
</tr>
<tr>
<td>Summary Table – Beam powers and number of suppliers</td>
<td>12</td>
</tr>
<tr>
<td>Gamma Sources</td>
<td>13-15</td>
</tr>
<tr>
<td>Facilities</td>
<td></td>
</tr>
<tr>
<td>Industrial usage</td>
<td></td>
</tr>
<tr>
<td>Status of Major Industrial Applications</td>
<td>16-36</td>
</tr>
<tr>
<td>Wire and Cable Insulation</td>
<td>16-18</td>
</tr>
<tr>
<td>Materials and formulations</td>
<td></td>
</tr>
<tr>
<td>Trends and needs</td>
<td></td>
</tr>
</tbody>
</table>

Heat Shrinkable Products
- Principles of technology
- Food packaging
- Materials
- Trends and needs
- Electrical, electronic, and telecommunication
- Materials
- Trends and needs

Tires
- Materials and formulations
- Trends and needs

Surface Coatings – Inks, Coatings and Adhesives
- Materials and formulations
- Trends and needs

Medical Product Sterilization
- Materials concerns
- Trends and needs

Food Irradiation
- Trends and needs

Niche Applications
- Grafting
- Hydrogels
- Depolymerization
- Pollution prevention

Summary of Trends and Needs in Materials
- 37-38

Status of Technology Transfer and New Market Development
- 39-40

Conclusion
- 41
Industrial Irradiation Processing of Polymers
Status and Prospects

REPORT
CONTENTS

1. INTRODUCTION .. 1

2. SOURCE TECHNOLOGIES ... 1
 2.1. Electron Beams and Gamma Ray Sources ... 1
 2.2. Gamma Ray Sources ... 2
 2.3. Electron Beam Sources .. 3
 2.4. Electron beam sources: Low-voltage accelerators .. 5
 2.5. Electron beam sources: Mid-voltage accelerators .. 7
 2.6. Electron beam sources: High-energy accelerators ... 9
 2.7. Relating output power to materials effects .. 15

3. POLYMERS AND POLYMERIC PRECURSORS ... 18
 3.1. Chemical reactions and properties of interest ... 18

4. RADIATION EFFECTS ON POLYMERS AND POLYMERIC PRECURSORS 21
 4.1. Polyethylenes ... 21
 4.2. Polypropylenes ... 25
 4.3. Polyvinyl and Polyvinylidene Chloride .. 26
 4.4. Fluoropolymers .. 27
 4.5. Engineering thermoplastics .. 28
 4.6. Elastomers .. 28
 4.7. Thermoplastic elastomers ... 29
 4.8. Polymeric precursors ... 29
 4.9. Hydrogels .. 31
 4.10. Summary ... 31

5. CONCLUSIONS ... 33
Industrial Applications of Electron Accelerators

Marshall R. Cleland
Ion Beam Applications

IBA Technology Group
151 Heartland Boulevard
Edgewood, New York 11717

Presented at the CERN Accelerator School
Small Accelerator Course
Zeegse, Netherlands
24 May to 2 June, 2005
Industrial Electron Beam Processing

Contributors:

Antony J. Berejka David Vroom
Marshall R. Cleland Wilson Calvo
Sueo Machi Anne Testoni
Vadim L. Auslender Michael Fletcher
Jean-Louis Bol Zbigniew Zimek
Agnes Safrany Maria Helena Sampa

Distributed as Working Material on a CD at the International Meeting on Radiation Processing – London, September 2008
Revision 1a

Including additional inputs from:

Ruth Brinstein
Andrzej Chmielewski
Ahmet Cokragan
Nelida del Mastro
Dieter Ehlermann
Fiona Malcolm
Alan Tallentire
Major Sections

1. Introduction
2. Electron Beam Accelerators
3. Materials Effects
4. Process Dosimetry
5. Major End-use Applications
6. Other Application Areas
7. Emerging Application Areas
8. Electron Beam Service Centers
9. References
1. Introduction

1.1 Electron Beam Processing Industry
1.2 Energy Transfer
1.3 Electron Beam Parameters
1.4 X-radiation
2. Electron Beam Accelerators

2.1 Historical Development
2.2 Electron Beam Sources
2.3 High-energy Accelerators
2.4 Mid-energy Accelerators
2.5 Low-energy Accelerators
2.5.1 Low-energy EB compared to Ultraviolet (UV) Radiation
Low-energy Accelerators

Coolidge Early Developments
High-vacuum X-ray tube
First External EB tube
ESI Elongated Cathode
RPC/PCT Multiple Cathode
NHV Curetron™
AEB Sealed Emitter
Early EB Accelerators

Coolidge’s First High-vacuum, Hot-cathode X-ray Tube
US Patent Application Filed May 9, 1913
Early EB Accelerators

Coolidge’s Electron Tube with Foil Window
First External Beam Electron Accelerator
US Patent Application Filed April 28, 1925
ESI Elongated Cathode
RPC/PCT Multiple Cathode
NHV Curetron™
AEB Sealed Electron Emitter

- Window
- Support
- Grid
- Factory
- Evacuated
- Acceleration
- Chamber

27 cm diameter

33 cm height

~15 kilos

27 cm diameter
AEB Sealed Electron Emitter
Medium-energy Accelerators

Philips N.V. Cockcroft-Walton
GE Resonant Transformer
IBA/RDI Dynamitron
HVEC Insulating Core Transformer
D. V. Efremov Institute (NIIEFA)
Budker Institute ILU and ELV
NHV Corporation Cockcroft-Walton
Cockcroft-Walton Accelerator
GE Resonant Transformer
HVEC Insulating Core Transformer
Budker Institute Single Cavity ILU
NHV Balanced Cockcroft-Walton

3 MeV, 150 kW
High-energy Accelerators

Varian Associates Linac
CGR MeV (Getinge Linac)
Mevex
Titan Scan (L3 Communications)
IBA Rhodotron
Budker Institute ILU
CGR MeV (Getinge Linac)

10 MeV, 20 kW
IBA Industrial Rhodotron®

10 Pass, 10 MeV, 200 kW
IBA Industrial Rhodotron®

6 Pass, 7 MeV, 700 kW
Budker Institute ILU
3. Material Effects

3.1 Polyethylenes
3.2 Polypropylenes
3.3 Halogenated Plastics
3.4 Engineering Thermoplastics
3.5 Elastomers
3. Material Effects

3.6 Thermoplastic Elastomers
3.7 Monomers and Oligomers
3.8 Water Soluble Polymers
3.9 Natural Polymers
3.10 Living Matter (DNA)
Polyethylene Crosslinking

Polyethylene – amorphous region

PE with reactive free radical

\[2 \left[\begin{array}{c} \text{C} \\ \text{H}_2 \\ \text{C} \\ \text{H}_2 \\ \text{C} \\ \text{C} \\ \text{H}_2 \\ \text{H}_2 \end{array} \right] + e^- \rightarrow \begin{array}{c} \text{C} \\ \text{H}_2 \\ \text{C} \\ \text{H}_2 \\ \text{C} \\ \text{C} \\ \text{H}_2 \\ \text{H}_2 \end{array} \]
DNA Scissioning
4. Process Dosimetry

4.1 Alanine

4.2 Polyethylene
Low-energy EB Concerns

Monte Carlo 80 keV EB Penetration through 6 µm Ti Window into 144 µm Alanine Coating
ATR FTIR Absorbance
at 965 cm\(^{-1}\) in 38 µm LDPE Film

Multiple passes at 3.0 MV
5. Major End-use Applications

5.1 Wire and Cable Insulation
5.2 Heat-Shrinkable Tubing
5.3 Heat-Shrinkable Food Packaging Films
5.4 Closed Cell Polyethylene Foams
5.5 Automobile Tire Components
5.6 Inks, Coatings and Adhesives
5.7 Hydrogels
Wire and Cable and Tubing
Under-beam Handling
Closed Cell PE Foam
Pigmented Coatings

Low-energy EB Cured Coating after 1000 hours Salt-spray Test
5. Major End-use Applications

5.8 Medical Device Sterilization
 5.8.1 Regulatory Compliance for Sterilization
 5.8.2 In-line Medical Device Sterilization

5.9 Food Irradiation
 5.9.1 Regulatory Compliance for Food

5.10 Food and Medical Product Packaging Decontamination
Medical Packaging Decontamination

Getinge Linac STERSTAR™ System
Three 200 keV Triangulated Beams
6. Other Application Areas

6.1 PTFE Degradation
6.2 Water Pipes and Tubing
6.3 Battery Separators
6.4 Filter Membranes
6.5 Semi-conductor Treatment
6.6 Gem Stone Irradiation
PEX-C PE Pipes
7. Emerging Application Areas

7.1 Cellulose Degradation for Ethanol/Biofuel Production
7.2 Cellulose Degradation for Viscose
7.3 Waste-water Treatment
7.4 Fossil Fuel Stack Gas Treatment
7.5 Exhaust and Gaseous Treatment
Contaminated Water Treatment
Fossil Fuel Stack Gas Treatment
7. Emerging Application Areas

7.6 Composite Curing
7.7 Carbon Fiber Modification
7.8 Silicon-Carbide Fiber Manufacture
7.9 Fuel Cell Membrane Grafting
7.10 Fuel Cell Catalyst Modification
7.11 PTFE Crosslinking
7.12 Curing Rubber Sheeting
X-ray Cured Carbon-Fiber Auto Fender

Cured in the Mold at 30 kGy
7. Emerging Application Areas

7.13 Seed Disinfestation
7.14 Soil Disinfestation
7.15 Grafted Biologically Active Compounds
7.16 Human tissue sterilization
7.17 Direct Food Contact Coatings
8. Electron Beam Service Centers

North and South America 18
Western Europe 24
Asia-Pacific and Elsewhere 11

Total 53
Document Summary

104 Pages
13 Tables
108 Figures
269 References
20.8 MB MS Word File
13 EB Manufacturers