Industrial Electron Beam Processing Overview of the Document

Tony Berejka, Ionicorp⁺ Huntington, New York, USA

Marshall R. Cleland, IBA Industrial, Inc. Edgewood, New York, USA

> IAEA/ANS AccApp '09 Vienna, Austria 7 May 2009

Industrial Electron Beam Processing

Document sources:

1 – IAEA Industrial Irradiation of Polymers: Status and Prospects Report – August 2005

2 – Industrial Applications of Electron
 Accelerators: CERN Accelerator School –
 24 May to 2 June, 2005

3 – IAEA Consultants Meeting – July 2008

Berejka 14 August 2004 Proposal

Industrial Irradiation Processing Status and Prospects – 2004

Anthony J. Berejka 4 Watch Way; Huntington, NY 11743, USA Phone/fax: 1-631-549-8517 E-mail: berejka@msn.com

Outline

Торіс	pages
Executive Summary	1-2
Status of Industrial Equipment and Facilities	3-15
High-Voltage Accelerators Principles of operation Industrial usage Sources for x-ray conversion	3-5
Mid-Voltage Accelerators Principles of operation Industrial usage	6-9
Low-Voltage Accelerators Principles of operation Equipment innovations Industrial usage	9-11
Summary Table – Beam powers and number of suppliers	12
Gamma Sources Facilities Industrial usage	13-15
Status of Major Industrial Applications	16-36
Wire and Cable Insulation Materials and formulations Trends and needs	16-18

Heat Shrinkable Products Principles of technology Food packaging Materials Trends and needs Electrical, electronic and telecommunication Materials Trends and needs	20-24
Tires Materials and formulations Trends and needs	24-25
Surface Coatings – Inks, Coatings and Adhesives Materials and formulations Trends and needs	26-30
Medical Product Sterilization Materials concerns Trends and needs	31-32
Food Irradiation Trends and needs	33-34
Niche Applications Grafting Hydrogels Depolymerization Pollution prevention	35-36
Summary of Trends and Needs in Materials	37-38
Status of Technology Transfer and New Market Development	39-40
Conclusion	41

AJB/11August04

2 of 2

Blue Book Publication August 2005

INTERNATIONAL ATOMIC ENERGY AGENCY

Industrial Irradiation Processing of Polymers Status and Prospects

REPORT

Blue Book Publication August 2005

CONTENTS

1. INTRODUCTION	1
2. SOURCE TECHNOLOGIES	1
 2.1. Electron Beams and Gamma Ray Sources	2 3 5 7 9
3. POLYMERS AND POLYMERIC PRECURSORS	18
3.1. Chemical reactions and properties of interest	18
4. RADIATION EFFECTS ON POLYMERS AND POLYMERIC PRECURSORS	21
4.1. Polyethylenes	21
4.2. Polypropylenes4.3. Polyvinyl and Polyvinylidene Chloride	25
4.4. Fluoropolymers	27
4.5. Engineering thermoplastics	28
4.6. Elastomers	
4.7. Thermoplastic elastomers	
4.8. Polymeric precursors 4.9. Hydrogels	
4.10. Summary	
5. CONCLUSIONS	33

Cleland CERN Lecture

Industrial Applications of Electron Accelerators

Marshall R. Cleland Ion Beam Applications

IBA Technology Group 151 Heartland Boulevard Edgewood, New York 11717

Presented at the CERN Accelerator School Small Accelerator Course Zeegse, Netherlands 24 May to 2 June, 2005

1

IAEA Consultants Meeting – July 2008

Industrial Electron Beam Processing

Contributors:

Antony J. Berejka Marshall R. Cleland Sueo Machi Vadim L. Auslender Jean-Louis Bol Agnes Safrany David Vroom Wilson Calvo Anne Testoni Michael Fletcher Zbigniew Zimek Maria Helena Sampa

Distributed as Working Material on a CD at the International Meeting on Radiation Processing – London, September 2008

Revision 1a

Including additional inputs from:

Ruth Brinston Andrzej Chmielewski Ahmet Cokragan Nelida del Mastro Dieter Ehlermann Fiona Malcolm Alan Tallentire

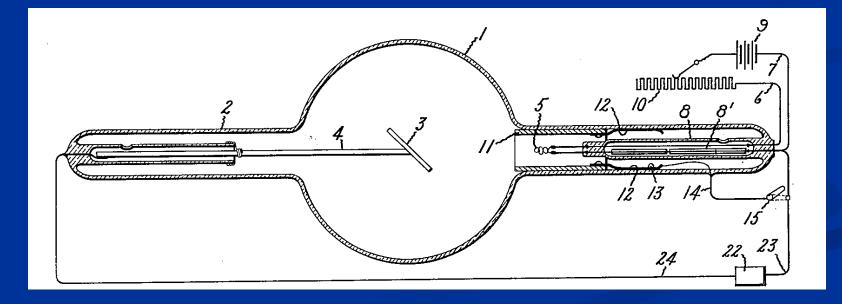
Major Sections

- 1. Introduction
- 2. Electron Beam Accelerators
- 3. Materials Effects
- 4. Process Dosimetry
- 5. Major End-use Applications
- 6. Other Application Areas
- 7. Emerging Application Areas
- 8. Electron Beam Service Centers
- 9. References

1. Introduction

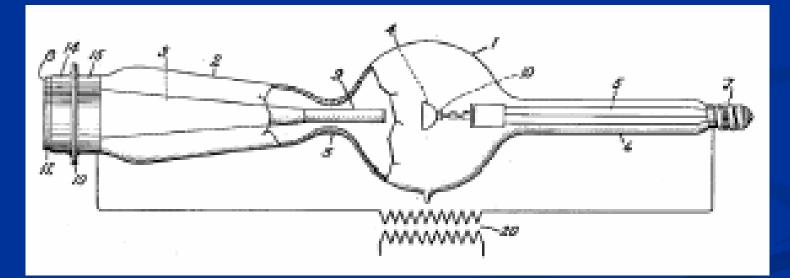
1.1 Electron Beam Processing Industry
 1.2 Energy Transfer
 1.3 Electron Beam Parameters
 1.4 X-radiation

2. Electron Beam Accelerators

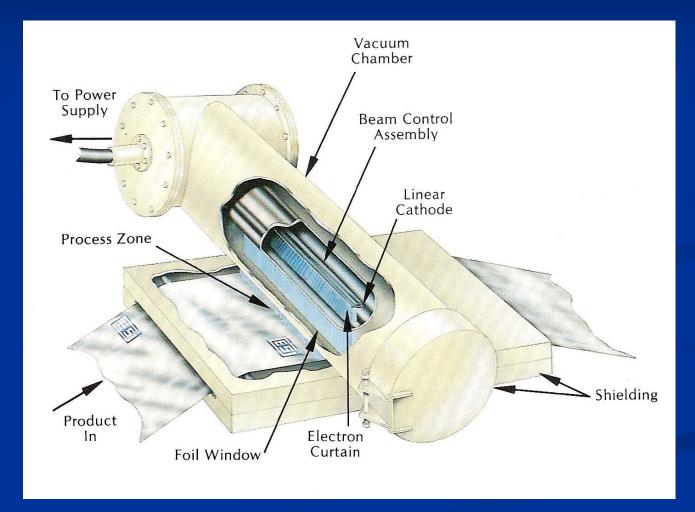

2.1 Historical Development
2.2 Electron Beam Sources
2.3 High-energy Accelerators
2.4 Mid-energy Accelerators
2.5 Low-energy Accelerators
2.5.1 Low-energy EB compared to Ultraviolet (UV) Radiation

Low-energy Accelerators

Coolidge Early Developments High-vacuum X-ray tube First External EB tube ESI Elongated Cathode RPC/PCT Multiple Cathode NHV Curetron[™] AEB Sealed Emitter


Early EB Accelerators

Coolidge's First High-vacuum, Hot-cathode X-ray Tube US Patent Application Filed May 9, 1913



Early EB Accelerators

Coolidge's Electron Tube with Foil Window First External Beam Electron Accelerator US Patent Application Filed April 28, 1925

ESI Elongated Cathode

RPC/PCT Multiple Cathode

NHV CuretronTM

AEB Sealed Electron Emitter

Window Support – Grid

Factory Evacuated Acceleration Chamber

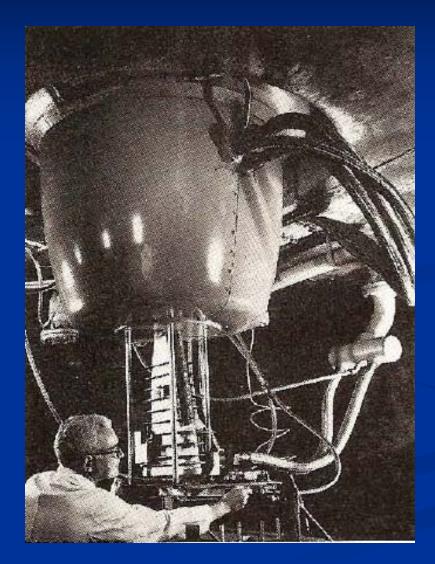
33 cm height

~15 kilos

27 cm diameter

AEB Sealed Electron Emitter

Medium-energy Accelerators

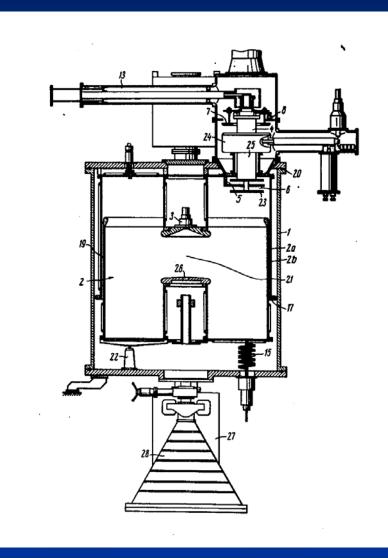

Philips N.V. Cockcroft-Walton
GE Resonant Transformer
IBA/RDI Dynamitron
HVEC Insulating Core Transformer
D. V. Efremov Institute (NIIEFA)
Budker Institute ILU and ELV
NHV Corporation Cockcroft-Walton

Cockcroft-Walton



Cockroft-Walton Accelerator

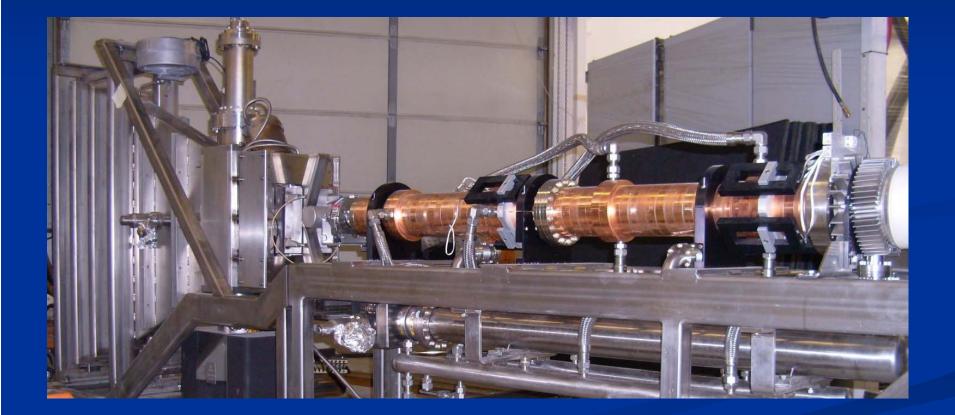
GE Resonant Transformer


IBA/RDI Dynamitron[®]

HVEC Insulating Core Transformer

Budker Institute Single Cavity ILU

NHV Balanced Cockcroft-Walton 3 MeV, 150 kW


High-energy Accelerators

Varian Associates Linac CGR MeV (Getinge Linac) Mevex Titan Scan (L3 Communications) IBA Rhodotron Budker Institute ILU

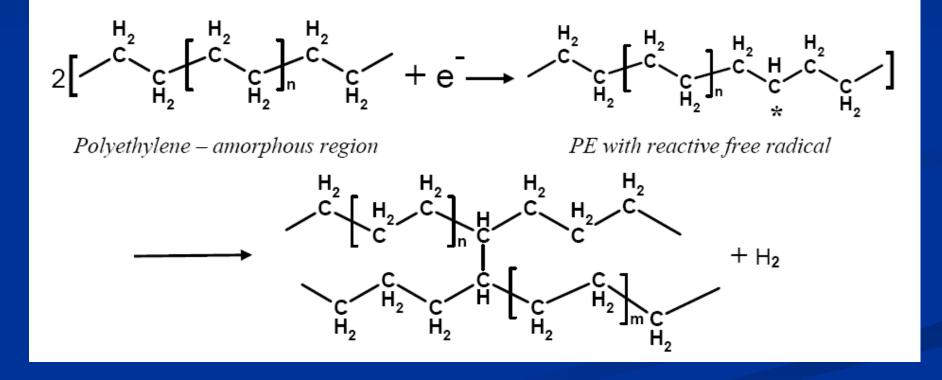
CGR MeV (Getinge Linac) 10 MeV, 20 kW

Mevex 10 MeV, 30 kW

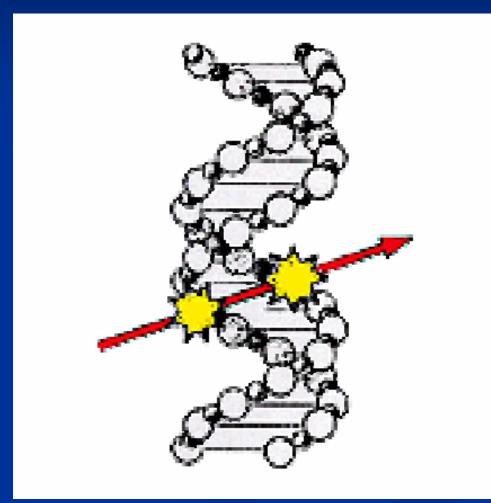
IBA Industrial Rhodotron[®] 10 Pass, 10 MeV, 200 kW

IBA Industrial Rhodotron[®] 6 Pass, 7 MeV, 700 kW

Budker Institute ILU


3. Material Effects

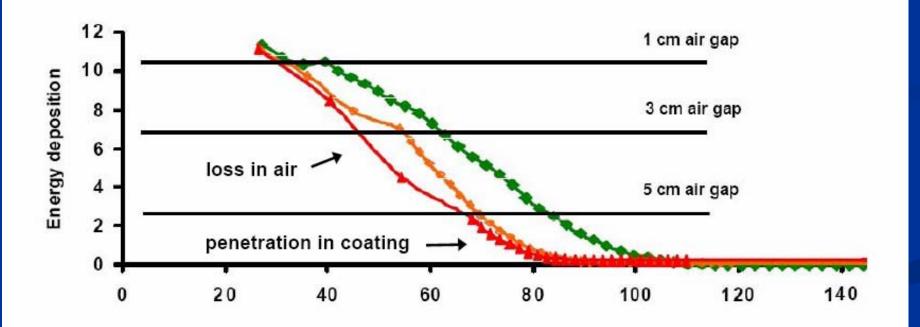
3.1 Polyethylenes
3.2 Polypropylenes
3.3 Halogenated Plastics
3.4 Engineering Thermoplastics
3.5 Elastomers


3. Material Effects

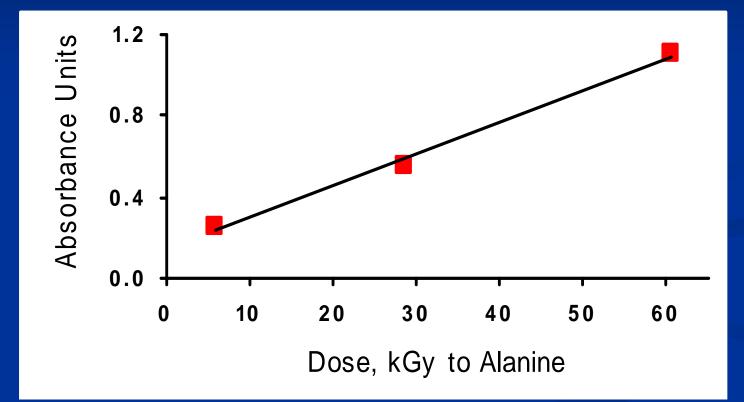
3.6 Thermoplastic Elastomers
3.7 Monomers and Oligomers
3.8 Water Soluble Polymers
3.9 Natural Polymers
3.10 Living Matter (DNA)

Polyethylene Crosslinking

DNA Scissioning


4. Process Dosimetry

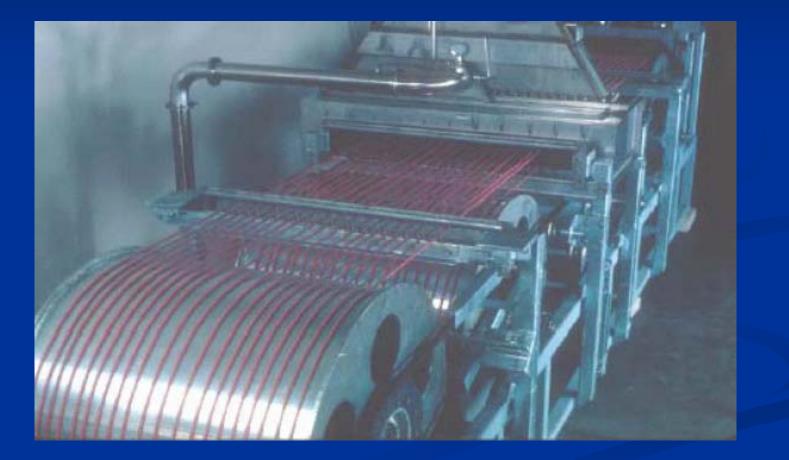
4.1 Alanine


4.2 Polyethylene

Low-energy EB Concerns

Monte Carlo 80 keV EB Penetration through 6 µm Ti Window into 144 µm Alanine Coating

ATR FTIR Absorbance at 965 cm⁻¹ in 38 µm LDPE Film



Multiple passes at 3.0 MV

5. Major End-use Applications

- 5.1 Wire and Cable Insulation
- 5.2 Heat-Shrinkable Tubing
- 5.3 Heat-Shrinkable Food Packaging Films
- 5.4 Closed Cell Polyethylene Foams
- 5.5 Automobile Tire Components
- 5.6 Inks, Coatings and Adhesives
- 5.7 Hydrogels

Wire and Cable and Tubing Under-beam Handling

Closed Cell PE Foam

Pigmented Coatings

Low-energy EB Cured Coating after 1000 hours Salt-spray Test

5. Major End-use Applications

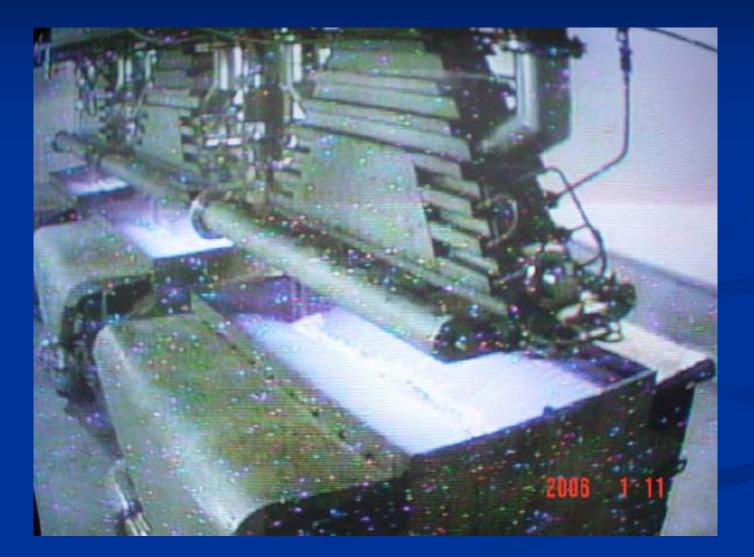
5.8 Medical Device Sterilization
5.8.1 Regulatory Compliance for Sterilization
5.8.2 In-line Medical Device Sterilization
5.9 Food Irradiation
5.9.1 Regulatory Compliance for Food
5.10 Food and Medical Product Packaging Decontamination

Medical Packaging Decontamination

Getinge Linac STERSTAR[™] System Three 200 keV Triangulated Beams

6. Other Application Areas

6.1 PTFE Degradation
6.2 Water Pipes and Tubing
6.3 Battery Separators
6.4 Filter Membranes
6.5 Semi-conductor Treatment
6.6 Gem Stone Irradiation


PEX-C PE Pipes

7. Emerging Application Areas

7.1 Cellulose Degradation for Ethanol/Biofuel Production
7.2 Cellulose Degradation for Viscose
7.3 Waste-water Treatment
7.4 Fossil Fuel Stack Gas Treatment
7.5 Exhaust and Gaseous Treatment

Contaminated Water Treatment

Fossil Fuel Stack Gas Treatment

7. Emerging Application Areas

7.6 Composite Curing
7.7 Carbon Fiber Modification
7.8 Silicon-Carbide Fiber Manufacture
7.9 Fuel Cell Membrane Grafting
7.10 Fuel Cell Catalyst Modification
7.11 PTFE Crosslinking
7.12 Curing Rubber Sheeting

X-ray Cured Carbon-Fiber Auto Fender

Cured in the Mold at 30 kGy

7. Emerging Application Areas

7.13 Seed Disinfestation
7.14 Soil Disinfestation
7.15 Grafted Biologically Active Compounds
7.16 Human tissue sterilization
7.17 Direct Food Contact Coatings

8. Electron Beam Service Centers

North and South America18Western Europe24Asia-Pacific and Elsewhere11

Total 53

Document Summary

104 Pages
13 Tables
108 Figures
269 References
20.8 MB MS Word File
13 EB Manufacturers