

International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators Vienna, Austria 4 - 8 May 2009.

Electron Beam for Environmental Conservation

Flue gas/VOC Purification

Wastewater treatment

Sludge treatment

/98

2

Copyright 6550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Technical Advantages of radiation process

- *. Radiation Technology is Eco-friendly technology -. No secondary waste generation
 - -. No catalysts, no heating and easy for automation.
- *. Experienced in pilot plant and several industrial plants
- *. Economical Advantages in capital cost and O & M cost
- *. For flue gas treatment and sludge treatment, by-products are useful for fertilizer.

The total volume of water on Earth is about 1,400 million km³ of which only 2.5 per cent, or about 35 million km³, is freshwater.

The usable portion of these sources is only about 200 000 km3 of water — less than 1 per cent of all freshwater and only 0.01 per cent of all water on Earth.

	Volume (1,000 km ³)	% of total water	% of total freshwater
Salt water	23/1	100	
Oceans	1,338,000	96.54	
Saline water/lakes	12,955	0.94	
nland waters			
Glaciers, Snow covers	24,064	1.74	68.7
Fresh groundwater	10,530	0.76	30.1
Others	435	0.02	1.2
Total water	1,386,000	100	21
Total freshwater	35,029	1 Comments	100

Major Stocks of Water

If the World were a village of 100 peoples,

75 people have some supply of food and a place to shelter them from the wind and the rain, but 25 do not.

17 have no clean, safe water to drink.

Adopted from "If the World were a village of 100 peoples," by Douglas Lummis

What is water/wastewater treatment?

Main purpose of wastewater treatment

- -. Removal of harmful impurities (COD, BOD, S/S etc.)
- -. Removal of color, odor etc.
- -. Removal of T-N, T-P

To discharge to river, or to re-use in industries or irrigation

- -. Disinfection of microorganisms
 - (Coli-form & pathogenic organisms)
- -. Destruction of endocrine disrupter (natural and synthetic chemicals such as Nonyl phenols and its derivatives) Fight 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea 9 /98

Why e-beam water/wastewater treatment ?

- **1. Remove organic impurities with radiation chemical reaction**
- 2. Remove colors by destruction of double bond
- 3. Remove odors by opening of rings in aromatic compound
- 4. Disinfection of microorganisms by destruction of DNA
- **5.** Destruction of endocrine disrupter with radical reaction
- 6. Recycle for irrigation, impoundment and individual uses

Characteristics of e-beam wastewater treatment

Water/Wastewater treatment by Radiation-Chemical reactions

Radiation (electron-beam) treatment consists in the formation of very reactive radical particles upon the water radiolysis. They are:

- hydrated electron
- hydrogen atom
- hydroxyl radical

e-_{aq} (reducer); ·H (reducer); ·OH (oxidizer).

11/98

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

$$\begin{array}{l} e^{-} \longrightarrow e^{-}_{therm} \longrightarrow e^{-}_{aq} \\ H_{2}O^{+} + H_{2}O \longrightarrow H_{3}O^{+} + OH \\ e^{-}_{aq} + H_{3}O^{+} \longrightarrow H + H_{2}O \\ H + H \longrightarrow H_{2} \\ OH + OH \longrightarrow H_{2}O_{2} \\ e^{-}_{aq} + OH \longrightarrow OH^{-} \end{array} \right\}$$
"Spur" reactions $\leq 10^{-8}$ s

Copyright EDTECH 550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Principles of Wastewater treatment with e- beam

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Application on water/wastewater treatment

With high contamination

Textile dyeing wastewater Leachate from Landfill area from petrochemical plant from Paper-Mill from tanning industries from slaughterhouse & fisheries

Low or less contamination

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Application of e-beam on water/wastewater treatment

- -. Wastewater from Textile Dyeing Companies
- -. Wastewater from Papermill
- -. Leachate from Sanitary Landfill
- -. Wastewater containing Heavy metals (Cd,Hg,Pb,Cr⁺⁶)
- -. Re-use of effluent from municipal wastewater plant
- -. Remediation of contaminated water (PCB, Explosives)
- -. Contaminated Underground water
- -. Drinking water

Water/Wastewater treatment plant

	Flue Gas Purification	Wastewater Treatment	Sludge Hygenization
Contaminants to clear	SO ₂ , NO _X , (Dioxin)	Complex COD, BOD, S/S etc.	Disinfection of Microorganism
Cleaning Process	Simple	Limitation in depth Combined with others	Limitation in depth Handling system
Competition with other processes	Superiority proved in commercial plant	Complicate to analyze	Many advantages over chemical processes
Technology	Fully Developed	Lab. to Pilot scale	Lab. to Pilot scale
Economies	Proved through Pilot & Commercial plant	Complicate to analyze	Complicate to analyze
By-product	Useful for fertilizer	Wastewater (less toxic)	Useful for fertilizer or soil treatment

Comparison of Flue Gas Purification, Wastewater & Sludge Treatment

Why e-beam processes are not widely used

Barriers for Industrial Application

-. Public Acceptances

Uneasy for the Radiation Safety New Species by Radiation

Composite Body Panels Autheniver-bondert Composite Components

Copyright 6550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Why e-beam processes are not widely used ?

Barriers for Industrial Application

Public Acceptances
 Uneasy for the Radiation Safety
 New Species by Radiation
 Reliability for year-round operation
 Analysis of by-product, Toxicity

Why e-beam processes are not widely used ?

Barriers for Industrial Application

- -. Public Acceptances Uneasy for the Radiation Safety
 - New Species by Radiation
- -. Technical problems Reliability for year-round operation
 - Analysis of by-product, Toxicity
- -. Regulation from Authorities
- -. Competition with Other processes (Economics)

Difficult to beat the conventional processes High investment cost and long returns No Alternatives or by-passes for shut-down Not universal for all environmental plant Difficult to find BP

Ionizing radiation is an expensive form of energy.

If the e-beam process is the only and unique solution

- no restrictions on cost
- sterilization of some medical items, removal of toxic compound etc.

If not, severe competition with other process

- in cost, performance, safety, etc.
- especially in emerging technology Wastewater, Flue gas treatment, Sludge Hygienization
- even in well-known technologies, such as cross-linking of wires, heat-shrinkable materials and sterilization etc.

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Radiation process (e-beam, y-ray etc.) can survive only when it has **Technical & Economical** advantages over existing processes. TECH 550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea 24/98 Radiation processing should be

Better & Cheaper to other processes.

1. Find the proper radiation source for products -. Gamma-ray, X-ray, or e-beam

26/98

Steps of decision

- -. Decide what you want to treat (Polymer, Food, Medical items, Water, Gas, Sludge)
- -. Decide what Kind of Radiation (e-beam, Gamma, X-ray)
- -. E-beam ?
 - +. Limitation in penetration
- -. Gamma ray ?
 - +. Low dose rate slow productivity
- -. How about X-ray ?
 - +. Less efficient for energy utilization

1. Find the proper radiation source for products -. Gamma-ray, X-ray, or e-beam

- 2. Reduce doses
- -. with combined methods (Bio-, Physical/chemical etc.)
- 3. Apply cost-effective accelerator (in case of e-beam)

28/98

ACCELERATORS FOR RADIATION PROCESSING (recent achievements)

Accelerator type	Direct DC	UHF 100-200 MHz	Linear 1.3-5.8 GHz
Beam current	< 1.5 A	< 100 mA	< 100 mA
Energy range	0.1-5 MeV	0.3-10 MeV	2-10 MeV
Beam power	400 kW	700 kW	150 kW
Efficiency	80-90 %	25-50 %	10-20 %

Data from Dr. Z. Zimek of INCT, Poland

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Cost for unit power (\$/W)

Beam Power	20kW	40kW	100kW	200kW	400kW	1MW
Total Cost (M\$)	0.6	0.8	1.0	1.5	2	2.2*
Unit Cost (\$/W)	30	20	10	7.5	5	2.2

Copyright 6550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

- **1. Find the proper radiation source for products**
- -. Gamma-ray, X-ray, or e-beam
- 2. Reduce doses
- -. with combined methods (Bio-, Physical/chemical etc.)
- **3. Apply cost-effective accelerator**

4. Engineering Approaches

- -. Analysis of existing process \rightarrow Calculate the present cost
- -. Economics of radiation \rightarrow Max. allowable radiation doses
- -. Find useful additives or combination for lowering doses
- -. Laboratory test \rightarrow Confirmation of process
- -. Pilot plant \rightarrow Industrial scale design \rightarrow Commercial plants

31/98

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Key word: Textile dysing warmweter, radiation, a-beam, warmweter treatmen

Engineer (not all of them, a few ...) cares

Economics !!!

- cost effective

Copyright 6550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

What they do

- -. Laboratory analysis \rightarrow Find useful numbers
- -. Analyze the meaning of those numbers \rightarrow Some publications
- -. Laboratory experiments \rightarrow Basic design of plant
- -. Estimation of plant \rightarrow Calculation of necessary equipments
- -. Comparison with existing process \rightarrow ?

What we do

- -. Analysis of existing process \rightarrow Calculate the present cost
- -. Economics of radiation \rightarrow Max. allowable radiation doses
- -. Find useful additives or combination for lowering doses
- -. Laboratory test \rightarrow Confirmation of process
- -. Pilot plant \rightarrow Industrial scale design \rightarrow Commercial plants

Survival fraction of micro-organism

Copyright 6550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Examples of Engineering Approaches

- Example 1. Industrial e-beam Plant for Treating Textile Dyeing Wastewater.
- Example 2. Disinfection of Effluent from the Municipal Wastewater Treatment Plant for Reclamation

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Engineering Approaches

- -. Analysis of existing process
 - \rightarrow Calculate the present cost : 1.1~1.2 USD per m³ of wastewater
- -. Economics of E-beam
 - \rightarrow Determine the target cost : below 1 USD including bio-treat
 - \rightarrow Cost for radiation processing : below 0.4 USD per m³
 - \rightarrow Max. allowable radiation doses : less than 2 kGy
- -. Find useful additives or combination for lowering doses
 - → Combined with bio-system (Activated sludge system)
- -. Laboratory test
 - → Confirmation of process, engineering design (delivery etc.)
- -. Pilot plant \rightarrow Industrial scale design \rightarrow Commercial plants

Calculation of Required E-beam power

P (kW, kJ/s) = D(kGy, kJ/kg) * M (kg/s) / F

Where P = delivered power of e-beam (kW = kJ/s) M = mass productivity (kg/s) D = absorbed dose (kGy = kJ/kg) F = efficiency of beam energy transfer (0.6~0.7)

Required E-beam for 1,000m³/day

 $P (kW) = \frac{1,000 \times 10^{3} \text{kg}/(24\times3600) \sec \times D(\text{kGy})}{0.6}$ with 1kGy \rightarrow 20kW, 10kGy \rightarrow 200kW 100kGy \rightarrow 2000kW

38/98

for treating 1,000m³/day, with 1~2kGy \rightarrow 40kW

Copyright EDTECH 550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Researches on Wastewater Treatment

- 1994~1995 : Lab. scale feasibility Test with e-beam and Gamma ray
- 95.12~99.5 : Researches on Dyeing Wastewater Treatment with e-beam (Dyeing Technology Center/EB-TECH Co.)
- 96.2 ~97.2 : Treatment of Dyes and Dyeing Wastewater
- 97.2~98.10 : Construction of e-beam Pilot Plant (1000m³/day)
- 98.10~ : Continuous operation of treatment facility
- 1998.9.16 : KT (Korea New Technology) Award
- 2000.7.19 : IR52 Industrial Research Award
 - : IAEA TC Project (Demo Plant Construction)
 - : Preparation for Plant Construction
 - : Start up of Demo Plant Construction
- 2005.12

- 2004

- 2001~2006

- 2001~2003

: Operation of Industrial scale plant (10,000m³/day)

39/98

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Required E-beam for 10,000m³/day

 $P (kW) = \frac{10,000 X 10^{3} \text{kg} / (24X3600) \sec X D(\text{kGy})}{0.6}$ with 1kGy \rightarrow 200kW, 10kGy \rightarrow 2,000kW 100kGy \rightarrow 20,000kW

for treating 1,000m³/day, with 1~2kGy \rightarrow 400kW

How to make 400kW machine ?

- -. Energy and power
- -. How many irradiators ?
- -. How to make uniform irradiation ?

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Electron Energy (MeV)	Max. range in air (m) (20℃,1atm)	Maximum range in water (mm)	Maximum range in Al (mm)	Maximum range in lead (mm)
30	109	132	53.8	10.2
10	43.1	49.8	21.7	5.42
1	4.08	4.37	2.05	0.69
0.1	0.13	0.14	0.069	0.027
0.01	0.0024	0.025	0.0013	0.00073

Maximum range of accelerated electrons

Service Conditions of Accelerator for Environmental Uses

Flue gas/VOC Purification Wastewater treatment

Sludge treatment

 Ti foil between
 Window is open to
 Sufficient gap to

 accelerator and reactor
 wastewater
 Sludge

 Copyright
 550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea
 42/98

Cost for unit power (\$/W)

Beam Power	20kW	40kW	100kW	200kW	400kW	1MW
Total Cost (M\$)	0.6	0.8	1.0	1.5	2	2.2*
Unit Cost (\$/W)	30	20	10	7.5	5	2.2

Copyright 6550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

One- irradiator system

Multi-irradiator system

Copyright 6550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Experiences in Wastewater Treatment

- For treating 10,000m³/day of water with one –irradiator
 - -. The injection speed of water

- For treating 10,000m³/day of water with three –irradiators
 - -. The injection speed of water

 $\frac{10,000 \text{ m}^3/\text{day}}{24 \text{ X} 3,600 \text{ sec/day}} = \frac{1}{0.004 \text{ m} \text{ X} 1.5 \text{ X}3} = 3.2 \text{ m/sec}$

H.V. Cable Connection (<700kV)

Solid Connection of H.V.

Copyright 6550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Double-window extraction device

Copyright 6550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

-. Power loss

- +. Theoretical 15%, 75kW for 500kW
- +. Too much power loss, requires huge cooling system

-. Power loss

- +. Less than 1%, 4~5kW for 400kW
- +. power loss concentrated on small area (jumping area)

Copyright COTECH 550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

High Power Accelerator (EB TECH & BINP)

\$ 2

ELV-12 Accelerator:Energy :0.6 - 1.0 MeVBeam power:400 kWBeam current:500 mA

Irradiators : 3 (0~200mA) Window width : up to 2m Double extraction window Discharge protection High frequency scanning

Configuration of e-beam Wastewater Treatment

50/98

Copyright EFFECH 550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Hornal mode of opera Accelerator chuck di			.5 1.4 .9 3.9	1.1 3.7	Enter Scaser Leogt - Enter Scaser Leogt - Print percenters - Print Beadline on P
Energy Full Bean Current Bean Current 1/2/3 I HVR Up/Low/Total U section Up/Low U Pr/Hinding Up/Low U Pr/Hinding Up/Low U FC SH2/SH1 +/2 I FC SH2/SH1 sola I Tube Div-r 1/2/3 I Diaphragn 1/2/3 I Ext/Doving 1/2/3	SEE STOCOCESSE	8,91 441,55 150,90 238,14 26,69 829,44 1943,58 495,82 348,61 43,98 1,38 23,19	H.91 451.47 138.45 219.91 25.87 834.55 1833.27 583.28 926.58 46.22 1.10 28.17	168,75 (58,84 	HF correction HF HF correction HF HF correction DDM Calcalate rufdata: UT 1 correction DDM LF 1 correction DDM Canoon Scnwaytre
U Beater 1/2/3 DAC energy	U U	5.10 7.24	5.45 7.23	7,83	

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Copyright 6550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

- -. Fixed cost : interest of 8% and depreciation in 20 years
- -. Variable cost (based on the year round operation : 8000hr/yr)
 - +. Electricity consumption (700kW) :
 - accelerator 500kW (80% efficiency) other equipment 200kW
 - +. Labour cost (3-shift) : 100,000\$/yr

Items		Cost Increase by Introducing E-beam	Remarks	
Operation	Invest (k\$)	(3,000)		
Cost	Interest	240	8%	
	Depreciation	150	20yrs	
	Electricity	312	700kW	
	Labour	100	3 shift	
	Maintenance, etc.	80	2%	
Total cost		882	E-beam only	

-. Operation cost for m³ of effluent

+. 882,000\$ / 10,000 m³/day /300 \approx 0.3\$ per m³ = 30 ¢ per m³

Copyright 6550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

		Existing Facility	E-beam plant *	Remarks
Capital cost	Investment Interest Depreciation	-	(3,000) 240 150	8% 20 years
Operating cost	Chemicals Sludge treatment Electricity	1,367 1,712 497	580 1,005 809	
	Total	3,576	2,784	EB + bio

-. Comparison with existing facility

+. Savings by reduction of Chemicals in pre-treatment

+. Savings of sludge treatment costs by reduction in chemicals and also the reduction in retention time in bio-treatment

- +. Increase in electricity consumption
- -. Moreover, the quality of treated water has improved

Copyright 6550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Examples of Engineering Approaches

- Example 1. Industrial e-beam Plant for Treating Textile Dyeing Wastewater.
- Example 2. Disinfection of Effluent from the Municipal Wastewater Treatment Plant for Reclamation

What is water/wastewater treatment?

Main purpose of wastewater treatment

- -. Removal of harmful impurities (COD, BOD, S/S etc.)
- -. Removal of color, odor etc.
- -. Removal of T-N, T-P

To discharge to river, or to re-use in industries or irrigation

- -. Disinfection of microorganisms
 - (Coli-form & pathogenic organisms)
- -. Destruction of endocrine disrupter (natural and synthetic chemicals such as Nonyl phenols and its derivatives)

Sterilization Mechanism

Variation of DNA at E. Coli before and after electron beam (Electrophoresis) Copyright 550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Comparison in Disinfection Technology

CHLORINATION	UV RADIATION	OZONE	ELECTRON BEAM	
Enhances color removal.	Effective against bacteria & viruses at low dosages.	More effective than chlorine for inactivation of viruses.	Very effective against bacteria & viruses at	
Least expensive disinfection.	Not efficient in large scale	Biocidal activity is not influenced by pH. Not efficient in large scale	low dose. Simple design and feasible to large scale.	
Forms THMs. Chlorine gas is a hazardous corrosive gas.	Water with high calcium, turbidity & phenols may not be applicable Maintenance cost of UV lamp is high.	Byproducts are formed (bromide, aldehydes, ketones). Initial cost of ozonation equipment is high.	Needs Shielding (X-ray)	

64/98

Municipal Wastewater Treatment Plant in Daejeon

Municipal wastewater treatment

Capacity : 900,000m³/day Influent : 664,000m³/day

Copyright CUTECH 550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Existing System

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Effect of electron beam on the effluent from municipal wastewater plant: \mathbf{a} – radiation induced inactivation of some coliforms in the effluent; \mathbf{b} – variation of BOD, COD, TOC and Color with absorbed doses.

69/98

Copyright 650 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Design and Estimation of E-beam plant

- -. For Treating Effluent from Municipal Wastewater Plant or from the Contaminated Ground water
- -. To re-use in Irrigation or Industrial purposes
- -. Design Basis
 - +. Capacity : 100,000 m³/day
 - +. Dose : around 0.2 kGy
 - +. Expectation : Remove microorganisms over 99% Reduction in Color, Odor etc.

70/98

+. Operates year-round

	iter	ns	Investment	Remark
	Construction	Accelerator	2,000k\$	400kW
Investment		Facilities	1,000k\$	Shield room
		Others	1,000k\$	
	Sub-total		4,000k\$	
	Area		150m ²	
	Items	Annual Cost	Re	emark
	1. Labor	100	\$	
	2. Electricity	3204	\$ 800kW*0.05	\$/kWh*8000hr
Operation	3. Maintenance	80k	\$	
	4. Interest	(240ks	6%	
	5. Depreciation	(200k	\$) 20yrs	
	Total	500k\$(440k	B)	

Operation cost→ 940k\$/[(100,000ton/day)*330day] = 0.028\$/ton

Copyright EDTECH 550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

Cost analysis of EB & other processes

Technology	Ozone	Electron Beam(EB)	Ultraviolet (UV)
Flow		100,000m ³ /day	
Capital Cost	7.4M\$	4.0M\$	2.4M\$
Annual O&M Cost	1.2M\$	0.5M\$	1.0M\$
Etc.			Lamp life:1year Lamp p/u:\$550

- 1. Combined Sewer Overflow Technology Fact Sheet, Alternative Disinfection Methods [EPA 832-F-99-033] September 1999
- 2. Wastewater Technology Fact Sheet, Ultraviolet Disinfection [EPA 832-F-99-064] September 1999
- 3. 1999 Drinking Water Infrastructure Needs Survey, Modeling the Cost of Infrastructure [EPA 816-R-01-005] February 2001

TECH Report[2001]

Copyright CUTECH 550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

		Amount of wastewater (m³/day)			
		1,000 or less	1,000~10,000	over 10,000	
A/S	Invest	н	Μ	L	
	Operation	Μ	L	L	
Ozone	Invest	М	МН	н	
	Operation	Μ	МН	н	
Membrane Invest		М	н	н	
	Operation	Μ	н	н	
E-beam	Invest	н	Μ	L	
Operation		LM	L	L	

Relative cost for treating less-polluted industrial wastewater

74/98

- **1. Find the proper radiation source for products**
- -. Gamma-ray, X-ray, or e-beam
- 2. Reduce doses
- -. with combined methods (Bio-, Physical/chemical etc.)
- 3. Apply cost-effective accelerator
- 4. Engineering Approaches
- -. Analysis of existing process \rightarrow Calculate the present cost
- -. Economics of radiation \rightarrow Max. allowable radiation doses
- -. Find useful additives or combination for lowering doses
- -. Laboratory test \rightarrow Confirmation of process
- -. Pilot plant \rightarrow Industrial scale design \rightarrow Commercial plants
- 5. Show and Prove the feasibility by pilot operation
- -. Laboratory experiments \rightarrow Pilot scale test with Mobile machine

Lab. Scale Experiments (1~50m³/day)

Pilot scale Experiments (500~1,000m³/day)

- -. Cost
- -. Space
- -. O & M etc.

Industrial scale Wastewater Plant (10,000m³/day)

Industrial scale EBFGT Plant (~600,000Nm³/h)

Lab. Scale Experiments (1~10,000Nm³/h) copyright

Copyright CUTECH 550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

76/98

Construction Cost for Pilot Plant

Туре	Capacity	Main facility	Others		Total
Liquid	500~1,000m³/ d with 1~5kGy	accelerator (50kW) 0.7M\$ shieldroom and Civil 0.4M\$ reactor/piping etc. 0.2M\$	reservoir etc.	0.3M\$ 0.1M\$	1.7 M \$
Gas	~20,000Nm³/h with 4~8kGy	accelerator (50kW) 0.7M\$ shieldroom and Civil 0.4M\$ reactor/piping etc. 0.2M\$	cooler ESP etc.	0.2M\$ 0.4M\$ 0.1M\$	2.0M\$
Sludge	10~20m ³ /h with 10kGy	accelerator (50kW) 0.7M\$ shieldroom and Civil 0.4M\$	conveyor feeder piping etc.	0.1M\$ 0.3M\$ 0.2M\$	1.7 M \$

Lab. Scale **Experiments** (1~50m³/day)

Pilot scale Experiments (500~1,000m³/day)

Industrial scale **Wastewater Plant** (10,000m³/day)

Industrial scale EBFGT Plant (~600,000Nm³/h)

Lab. Scale **Experiments** (1~10,000Nm³/h) Copyright COTECH 550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea

78/98

Previous Mobile Accelerator (HVEA, U.S.A. 1990)

ICT accelerator 500 keV 0~40 mA Max. 20kGy

for watsewater

Ref.) Environmental Applications of Ionizing Radiation, Edited by william J. Cooper, Randy D. curry, and Kevin E. Oshea, "Field Application of a mobile 20kW electron beam treatment system on contaminated groundwater and industrial wastes", p.451-466, ISBN 0-471-17086-0, 1998 John Wily & Sons, Inc.

80/98

Previous Mobile Accelerator (FZK, Germany 1984)

ESI Electrocurtain 200 keV, 0~150 mA Flow rate : 1,000Nm³/h for gas treatment

Ref.) FUCH, P.; ROTH B.; SCHWING, U.; ANGELE, H.; GOTTSTEIN, J. Removal of NOx and SO2 by the electron beam Process. Radiation Physics and Chemistry, 31, No. 1–3,(1988) 45–56

Previous Mobile Accelerator (BINP, Russia design)

Ref.) VESTNIK "RADTECH-EUROASIA", Edited by S.I.Suminov "Accelerators of ELV type : Status, Development, Applications" pp6~15 Novosibirsk, 1999

Electron Accelerator

Experimental and analysis systems

Beam Energy : 0.4~0.7MeV, Beam Power : 20kW Self-sustaining system : Diesel electricity generator Total weight : 40 tons

84/98

Treatment CapacityLiquid waste: 500m³/day(at 2kGy)Gaseous waste: 10,000Nm³/h(at 4kGy)Sludge: 10m³/h(at 10kGy)

Window size : 640mm, Height from bottom to window : 560mm Reactors for water, gas and sludge can be located upon the experiments

Application of mobile accelerator

- -. Reduction of SO_X / NO_X , Dioxin from power plant
- -. Removal of VOCs, stench stink etc.
- -. Treatment of contaminated underground water
- -. Treatment of Industrial wastewater
- -. Reclaimanation of effluent from municipal plant

91/98

-. Sludge hygienization

Current Application of e-beam wastewater

- -. Treatment of Textile Dyeing Wastewater (Korea, Sri Lanka, Brazil etc.)
- -. Removal of Toxic Chemicals from Pharmaceutical and Petrochemical Companies. (Pesticide, Explosives, Dyes etc.)
- -. Removal of PCBs from the Transformer Oils

Removal of PCBs in Transformer Oil

PCB (PolyChlorinatedBiphenyl) :

Current Application of e-beam wastewater

- -. Treatment of Textile Dyeing Wastewater (Korea, Sri Lanka, Brazil etc.)
- -. Removal of Toxic Chemicals from Pharmaceutical and Petrochemical Companies. (Pesticide, Explosives, Dyes etc.)
- -. Removal of PCBs from the Transformer Oils
- -. Reclamation of Municipal Wastewater (Disinfection, Removal of endocrine disruptors)
- -. Treatment of Contaminated Underground Water (MTBE, PCBs, Oils, etc.)

94/98

-. Drinking Water (?)

Drawing by Villemard (1910) – Which will be possible in year 2000 (National Library of France)

Summary

- 1. Radiation processing has been one of the promising process for environmental treatment, such as Flue gas/VOC, Water/ Wastewater, and Sludge from 1970s. However, implementation of large scale plant has still several barriers. (both in technical and economical)
- 2. Accelerators of several hundreds kilowatt power is already available in the market, and some of them have proved their reliability in long term operation in Flue gas treatment or Wastewater treatment.
- 3. In spite of tough competitions, radiation processes are promising as long as we keep in economic advantages. And in some cases, the radiation treatment is the only and unique solution for treatment (niche application).

96/98

Radiation process (e-beam, y-ray etc.) can survive only when it has **Technical & Economical** advantages over existing processes. TECH 550 yongsan-dong Yuseong-gu, Daejeon 305-500, Korea 97/98

Thank You for your attention

Electron Beam Technology WWW.EB-TECH.COM

98/98