

Study of the Effects of Electron Beam on Heavy Metals in Presence of Scavengers for Decontamination and Purification of the Municipal and Industrial wastewater

A. Behjat, S. Dadfarnia, A. M. Salmanzadeh, M. Parsaeian, F. Anvari, and M. Kheirkhah

- Physics Department, Atomic and Molecular group, Yazd University, Yazd, Iran
- Chemistry Department, Yazd University, Yazd, Iran
- Yazd Radiation Processing Center, Atomic Energy Organization, Yazd, Iran

Research works undertaken

- Microbiological treatments (water company, Ministry of energy)
- Decolorization (Textile Industries & wastewater company)
- Removal of heavy metals (water & wastewater company)

Oxidation process usually used

Use of ozone

Hydrogen peroxide

Ultraviolet

Advance oxidation process (AOP)

- Interaction of ionizing radiation with water
- Based on electron beam irradiation of wastewater (hydroxyl free radicals)
- Capacity to decompose the organic compounds

RHODOTRON TT200 electron beam accelerator parameters

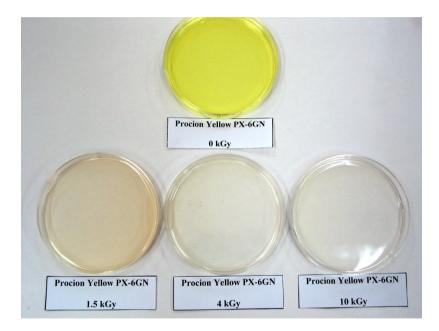
- Beam Energy
- Beam power at 10 MeV
- Beam power at 5 MeV
- Energy dispersion at 10 MeV
- Scanning range
- Total power consumption
- RF
- RF power output Electron gun average current
- Resolution

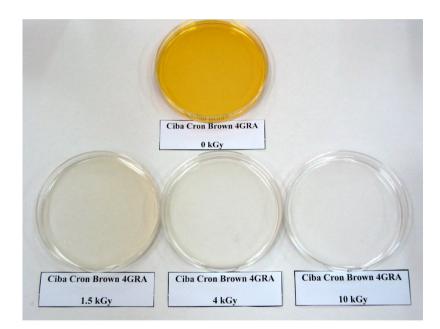
5 and 10 MeV 70 kW 35 kW ±300 keV 30-100 cm ≤ 300 kW 107.5 MHz 200 kW 0-10 mA ±50 μA

Irradiation of the wastewater samples

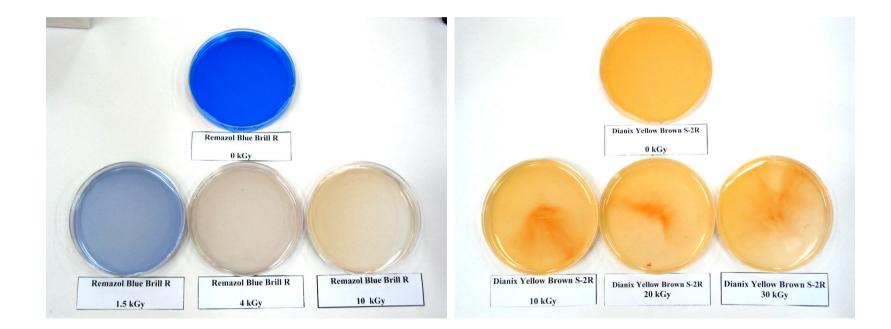
Wastewater irradiated by Electron beam

Wastewater samples before and after irradiation


Decolorization of dye molecules



Reactive dyes irradiated by different doses



Irradiation of reactive dyes

Irradiation of disperse dyes

Heavy Metals

 A common hazardous waste can damage organisms at low concentrations and tends to accumulate in the food chain.

Examples are:

Lead, Chromium, Cadmium, and Mercury.

Permitted level

element	Drinking Water mg/L	Natural Water and wastewaters mg/L	Water used in agriculture mg/L
Cd	0.005	0.01	0.01
Pb	0.05	0.05	5
Zn	3	5	2
Cu	0.05	1	0.2
Cr	0.05	0.05	0.1
Hg	0.001	-	-
As	0.05	0.05	0.1

Mechanism of radiolytic conversions of metal ions

 $Cd(II) + e_{aq} \rightarrow Cd(I)$ $Cd(II) + H \rightarrow Cd(I)$ $Cd(I) + Cd(I) \rightarrow Cd(0) + Cd(II)$ $nCd(0) \rightarrow Cd(0)_{n}$

$Cd(I) + OH \rightarrow Cd(H) + OH^{-}$

 $Cd(I) + HO_2 + H^+ \rightarrow Cd(II) + H_2O_2$

 $Cd(I) + H_2O_2 \rightarrow Cd(II) + OH + OH^-$

Addition of OH absorber (HCOO⁻)

format ions converte OH radicals (and H atoms) to COO⁻ radical ions

 $HCOO^{-} + OH(H) \rightarrow COO^{-} + H_2O(H_2)$ $Cd(II) + COO^{-} \rightarrow Cd(I) + CO_2$

 $Cd(I) + COO^{-} \rightarrow Cd(0) + CO_{2}$

Experimental procedure

Sample preparation

Irradiation of the samples

Determination of metal ions

Sample preparation (I)

- Methyl Mercury CH3HgCl and
- Dimethyl Mercury CH3HgCH3

Mercury

Methyl Mercury, (CH₃Hg) Found in polluted water and wastewater (Most of the mercury in body)

Dimethyl Mercury, Hg(CH₃)₂

Found in polluted air and soil

Sample preparation

Decomposition and recovery of methyl and dimethyl mercury

Organic mercury	1 kGy	3 kGy	5 kGy
CH ₃ HgCl	47.1 ± 3 .3%	70.9 ± 3.3%	98.2 ± 2%
CH ₃ HgCH3	10 ± 2.9%	15.5 ± 3.3%	20.3 ± 3.3%

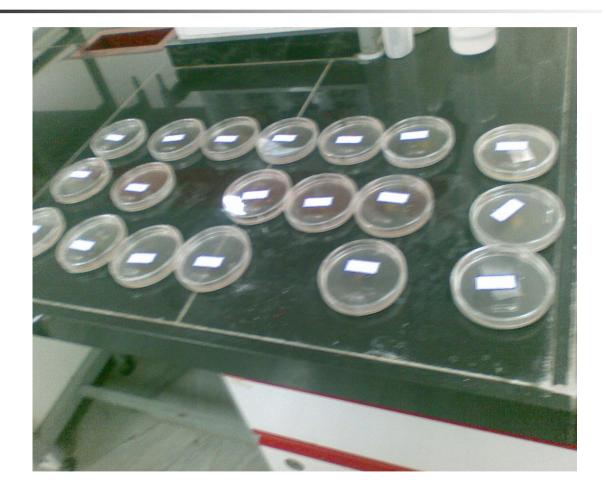
Sample preparation (II)

- 1) Wastewater from stabilizing ponds:
 - A) influent wastewater (Mixed)
 - B) effluent wastewater
- Distribution 2) Effluents from textile industry
- 3) Water solution spiking 100 ppb Cd or Pb

Yazd wastewater stabilizing ponds

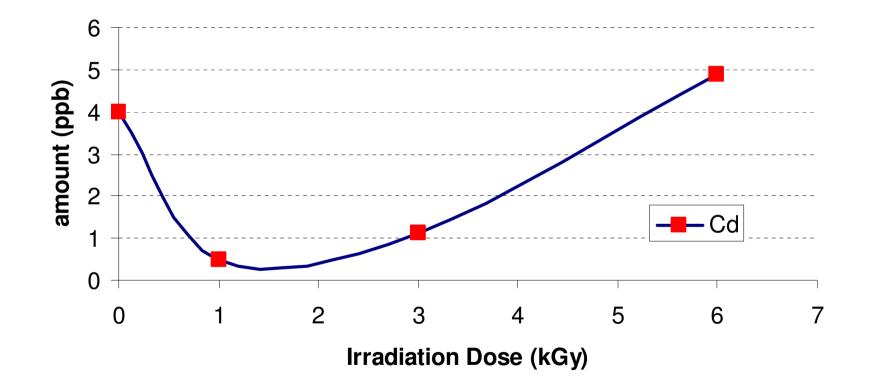
Textile effluents irradiated (different dose)

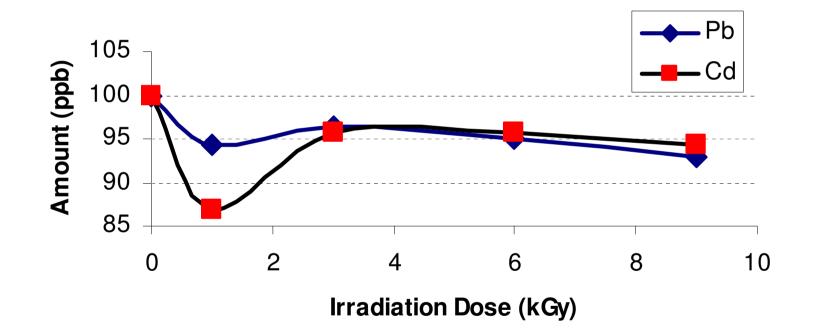
40 ml of solution in Petri dishes


Electron beam irradiation

Absorbed Doses:

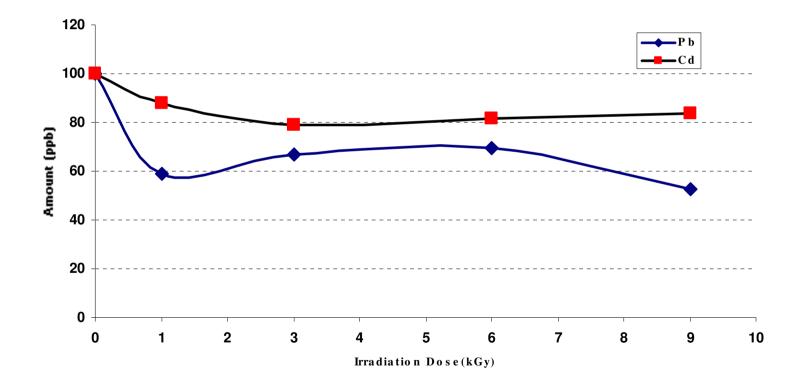
1 kGy 3 kGy 6 kGy 9 kGy


Irradiated samples ready for metal determination


Determination of metal ions by Furnace Atomic Absorption Spectrometer

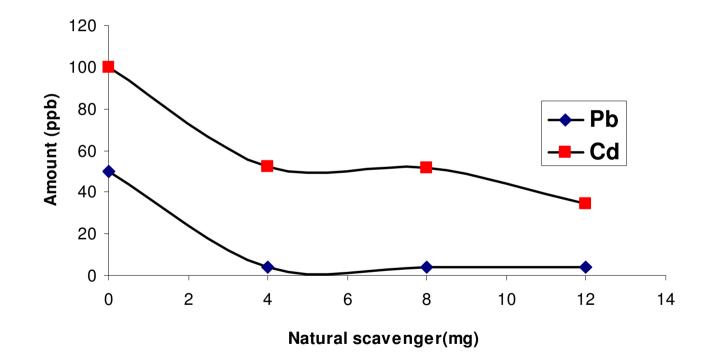
Irradiation of raw influent

Laboratory made samples



Addition of scavengers

- Rice bran
 size <200 micron
 as a natural sorbent.
- 4, 8, and 12 mg

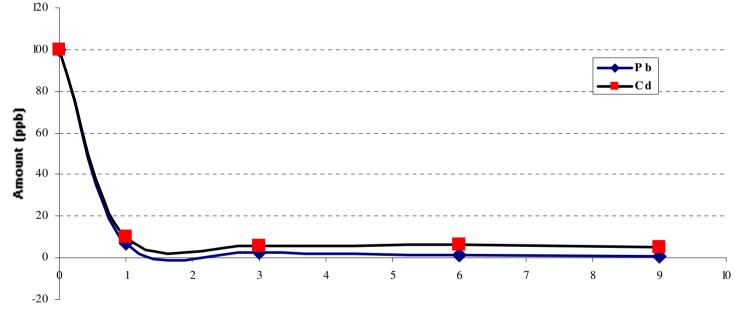

Irradiation of samples by adding 4 mg natural scavenger

Irradiation of the samples with different amounts of scavenger

Cd (ppb(Pb (ppb (Scavenger (mg)	Absorbrd Dose (kGy)
100	100	-	0
86.8±1.7%	94.2±0.5%	-	1
95.8±6%	79.3±6.3%	-	3
95.7±1.8%	95.1±7.8%	-	6
94.3±4.3%	93.0±5.4%	-	9
87.8±2.6%	59.1±4.8%	4	1
79.1±2.3%	67.0±5.1%	4	3
81.8±5.8%	69.5±3.5%	4	6
83.7±4%	52.5±4.9%	4	9
79.8±6.1%	51.5±0.3%	8	9
82.2±5.6%	34.3±8.9%	12	9

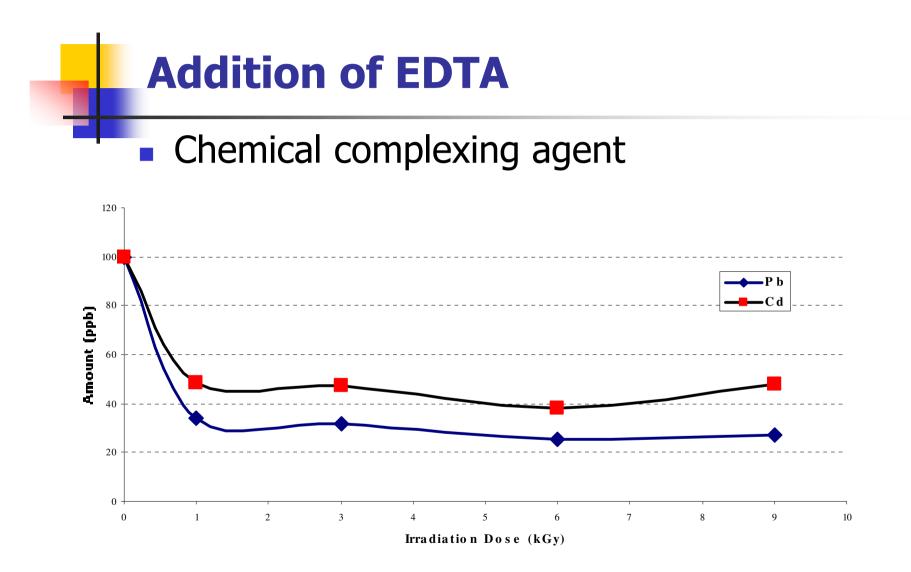
Adding natural scavenger (+9 kGy)

Water samples containing Cd and Pb and EDTA (0.001 molar)


Cd (ppb)	Pb (ppb)	Scaveng er (mg)	Absorb ed Dose
			(kGy)
100	100		0
48.3±5.3%	34.0±1.7%	12	1
47.3±3.8%	31.9±7.6%	12	3
38.1±6.3%	$25.4 \pm 0.2\%$	12	6
47.6±2.6%	27.0±10%	12	9

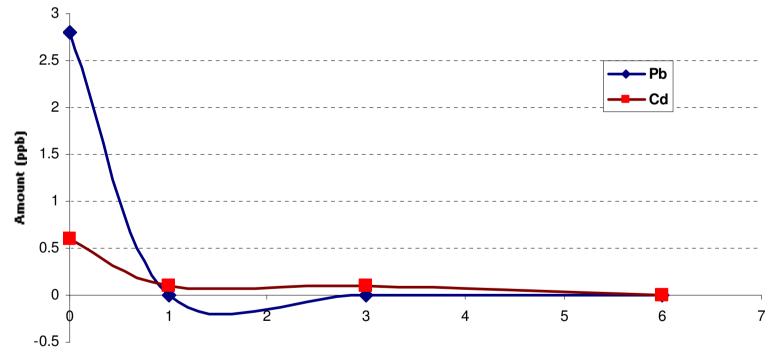
Irradiation of samples containing Cd and, Pb and Sodium acetate (NaCH3COO, 0.001 Molar)

Cd (ppb)	Pb (ppb)	Scavenger (mg)	Absorbed Dose (kGy)
100	100	0	0
10.1±0.4%	7.3±0.8%	12	1
5.9±2.9%	2.6±5.5%	12	3
6.4±0.1%	1.1±12.2%	12	6
5.4±0.5%	0.8±15.1%	12	9

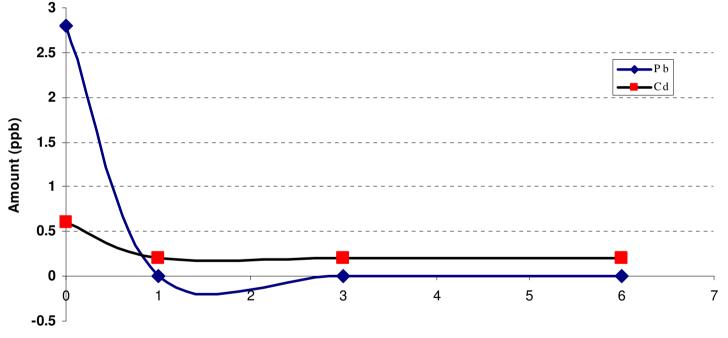

As a chemical reagent

Irradiation Dose (kGy)

Irradiation of samples containing Cd and Pb and EDTA (0.001 Molar) with and without scavenger


Cd (ppb)	Pb (ppb)	Scaven ger (mg)	Absorb ed Dose (kGy)
100	100		0
48.3±5.3%	34.0±1.7%	12	1
$47.3 \pm 3.8\%$	31.9±7.6%	12	3
38.1±6.3%	$25.4 \pm 0.2\%$	12	6
47.6±2.6%	27.0±10%	12	9

Irradiation of effluent from wastewater plant


Cd (ppb)	Pb (ppb)	NaCH ₃ COO Or EDTA) Scavenger () mg)	Irrradiation Dose (kGy(
0.6	2.8±2.2%	-		0
0.1±18.9%	N.D. ¹	NaCH ₃ COO	12	1
0.1±8.7%	N.D.	NaCH ₃ COO	12	3
	N.D.	NaCH ₃ COO	12	6
0.2±0.3%	N.D.	EDTA	12	1
0.2±3.6%	N.D.	EDTA	12	3
0.2±44.3%	N.D.	EDTA	12	6

Irradiation of effluent from wastewater plant +NaCH₃COO+12 mg scavenger

Irradiation Dose (kGy)

Irradiation of effluent from wastewater plant +EDTA+12 mg scavenger

Irradiation Dose(kGy)

Conclusion

 Electron beam irradiation of water and wastewater samples can increase the concentration of free metal ions in the samples.

- natural scavenger together with EB radiation can increase the heavy metal removal from the wastewater samples.
- capability of the natural scavenger in the presence of chemical agents is increased.

Thank you for your attention

