

SM/EB -16

Changes in Physicochemical,
Morphological and Thermal
Properties of Electron-beam
Irradiated Ethylene–Vinyl Alcohol
Copolymer (EVOH) as a Function of
Radiation Dose

Esperidiana Moura eabmoura@ipen.br

of EVOH resin and EVOH resin reinforced with piassava fiber after electron-beam irradiation

... and the correlation between properties of the EVOH resin and EVOH with piassava fiber

- a family of resins with
- > superior gas barrier properties compared to most of the polymeric materials;
- > excellent gas barrier properties to oxygen and organic compounds;
- > low absorption rate of odor and flavor;
- > excellent resistance to oils and organic solvents;
- > good chemical resistance;
- > high transparency and
- easy processability.

EVOH Copolymers - Application

are widely used in various fields such as:

> food packaging;

SÃO PAULO

> organic solvents packaging;

EVOH Copolymers - Application

> agricultural chemicals packaging;

> gasoline tanks

> and others.

EVOH Copolymers - Challenges

they are very sensitive to moisture,

high relative humidity conditions due to water absorption

- > their gas barrier ability deteriorates and
- their thermal and mechanical properties are affected too.

Piassava

(Attalea Funifera Mart.)

lignocellulosic fiber extracted from the leaves of a palm tree native to the Brazilian Atlantic rainforest

Piassava

SÃO PAULO

(Attalea Funifera Mart.)

- > it has higher lignin content than any other lignocellulosic fiber
- > lignin could be responsible for its inherent flexural rigidity and water proof resistance

SÃO PAULO

Piassava

(Attalea Funifera Mart.)

50% of the fiber is disposed as residue by the transformation industry

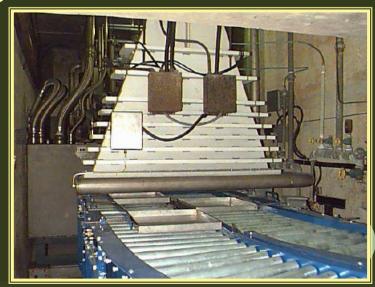
30% is discarded during the cut, cleaning and baling

Experimental

Material:

- > EVOH resin containing 68 mol% ethylene and
- Piassava (Attalea funifera Mart) fiber residues (disposed by some brooms and brushes manufacturers)

Piassava fiber \rightarrow after washed and dried \rightarrow reduced to fine powder using ball mills -> particle sizes $\leq 200 \, \mu m$.


EVOH resin reinforced with 10% of piassava fiber (in weight) by using

a double screw extruder machine.

EVOH and EVOH-piassava

e-beam Irradiation

- electrostatic accelerator (1.5MeV)
- > radiation dose up to 90 kGy
- > dose rate 11.22 kGy/s
- > room temperature
- > in air

Analyses

- > differential scanning calorimetry (DSC)
- > thermogravimetric analysis (TGA),
- > scanning electron microscopy (SEM) and
 - > sol-gel analysis.

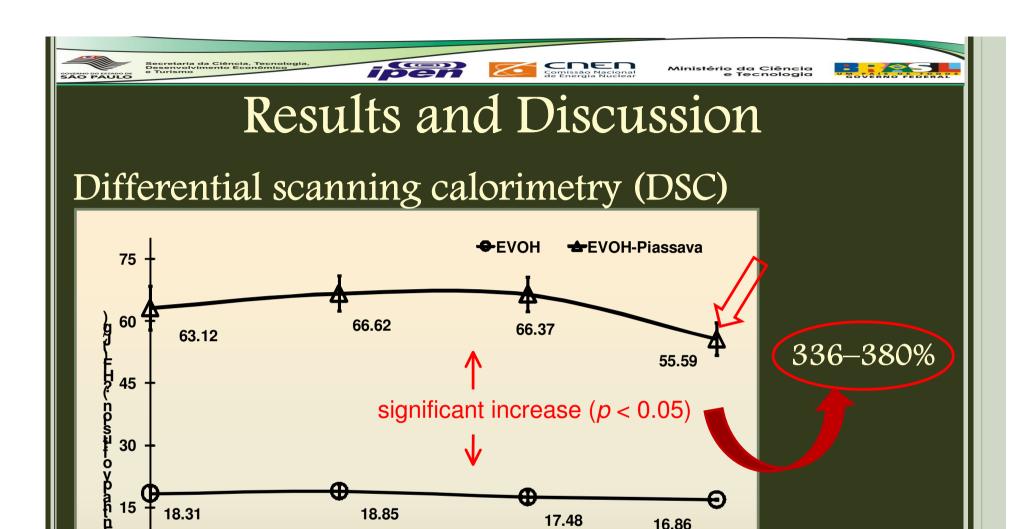


Figure 1. Effects of irradiation on melting enthalpy (ΔH_m) as a function of electron-beam radiation dose for the EVOH and EVOH-piassava.

45

Dose (kGy)

30

15

60

75

90

Table I. Crystallinity percentage variation as a function of electron-beam radiation dose

DOSE		EVOH(a)		EVOH-piassava ^(b)			EVOH- piassava/ EVOH (c)
(kGy)	ΔH_{m}	Δτ statistic	Δτ	ΔH _m	Δτ statistic	$\Delta au_{ m p}$	$\Delta \tau_{\rm p}$ (%)
	(J/g)	differences $(p < 0.05)$		(J/g)	differences $(p < 0.05)$	(%)	
0	18.31		_	63.12		-	71.00
30	18.85	ns ^(d)	_	66.62	ns ^(d)	-	69.72
60	17.48	ns ^(d)	_	66.37	ns ^(d)	-	73.66
90	16.86	ns ^(d)	-	55.59	$s^{(e)}$	11.93	70.18

(a) crystallinity percentage variation EVOH as a function of electron-beam radiation dose; (b) crystallinity percentage variation EVOH-piassava as a function of electron-beam radiation dose; (c) crystallinity percentage variation between EVOH-piassava and EVOH; (d) non-significant; (e) significant.

EVOH –piassava crystallinity

barrier

Water absorption rate

Thermogravimetric Analysis (TGA)

Table II. Initial degradation temperature and weight loss of the EVOH and EVOH-piassava as a function of electron-beam radiation dose

Dose (kGy)	EVOH			EVOH-piassava			EVOH- piassava/ EVOH
	$\begin{array}{ c c }\hline T_i^{(a)}\\ ({}^{o}C)\\ \end{array}$	T _f ^(b) (°C)	Weight Loss (%)	$ \begin{array}{ c c } \hline T_i^{(a)} \\ ({}^{o}C) \end{array} $	T _f ^(b) (°C)	Weight Loss (%)	T _i Difference ^(c) (%)
0	370.60	412.13	76.79	378.67	430.75	85.91	2.18 s ^(e)
30	367.29 ns ^(d)	416.08 ns ^(d)	75.52 ns ^(d)	379.41 ns ^(d)	429.16 ns ^(d)	85.07 ns ^(d)	3.30 s ^(e)
60	368.40 ns ^(d)	425.71 ns ^(d)	77.87 ns ^(d)	379.70 ns ^(d)	438.03 s ^(e)	84.62 ns ^(d)	3.07 s ^(e)
90	368.23 ns ^(d)	425.58 ns ^(d)	77.65 ns ^(d)	378.61 ns ^(d)	434.26 s ^(e)	83.08 ns ^(d)	2.82 s ^(e)

^(a) initial degradation temperature; ^(b) final degradation temperature; ^(c) difference of initial degradation temperature between EVOH and EVOH-piassava; ^(d) statistically non-significant (p < 0.05); ^(e) statistically significant (p < 0.05).

Scanning Electron Microscopy (SEM)

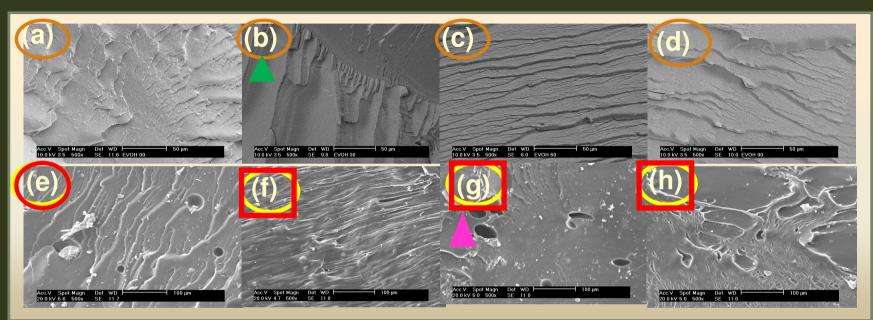


Figure 2. Scanning Electron Microscopy (SEM) micrographs for EVOH and EVOH-piassava at ranges electron-beam radiation dose studied. Fig. 2(a) non-irradiated EVOH; Fig. 2(b) EVOH at 30 kGy; Fig. 2(c) EVOH at 60 kGy; Fig. 2(d) EVOH at 90 kGy; Fig. 2(e) non-irradiated EVOH-piassava; Fig. 2(f) EVOH-piassava at 30 kGy; Fig. 2(g) EVOH-piassava at 60 kGy; Fig. 2(h) EVOH-piassava at 90 kGy.

slightly smoother EVOH rough, dense and compact, 30 kGy **↑** brittle

EVOH-piassava \(\rightarrow\) 2 phases (dispersed phase (piassava particles) **EVOH** continuous phase

Sol-Gel Analysis

The results did not show gel content in samples after extraction with solvent.

electron-beam radiation at radiation dose applied in this work was not enough for cross-linking the EVOH and EVOH-piassava materials.

Conclusions

The ΔH_m of EVOH and the ΔH_m of EVOH-piassava basically was not affected by irradiation, except for EVOH-piassava at 90 kGy

SÃO PAULO

Electron-beam radiation doses applied promoted better interfacial adhesion between piassava fiber and EVOH resin

Conclusions

Compared to original EVOH, EVOH-piassava presented:

a large difference in crystalline form

SÃO PAULO

order of macromolecules arrangement of EVOH was changed by piassava incorporation

- higher crystallinity > 70-74 % ⇒EVOH resin
- higher initial degradation temperature > 3%

Conclusions

These results are very important because:

They could lead to the obtaining of materials with...

> better barrier properties

- > lower water absorption rate
- > more stable thermal and mechanical properties
 - ... in high relative humidity conditions than original EVOH resin

THANK YOU FOR YOUR ATTENTION

Esperidiana Moura eabmoura@ipen.br