

ISOL@MYRRHA : an Application of the MYRRHA Accelerator for Nuclear Physics

Piet Van Duppen IKS, KUL, Leuven (BE)

MYRRHA

• Flexible irradiation facility

Need for high performance core : high power density in limited volume

> High power proton accelerator as driver

Design values

≻ I= 4mA
 ≻ E=600 MeV

•ldea :

Use part of the MYRRHA proton beam for nuclear physics applications

• 600 MeV, 100-200 μA, D.C. proton beam

•2.5-3 mA required for MYRRHA spallation target DC beam needed (how to split off 100 to 200 μ A: RF kicker)

Different target materials including uranium
e.g. Nb, TiC/C, La, Ta, UC: workhorse targets at present)

•Ruggedized target-ion source systems that deliver RIB @ \sim 50 keV:

- ECR 1+: gaseous elements (noble gases, C, N, O,..))
- surface ion source (hot cavity):
 - for beam of alkaline and earth alkaline elements
- lasers

!! degradation of the target performance to be taken into account !!

•Operational approach

•Long beam times (e.g. 12 weeks) for experiments that:

- need very high statistics
- > involve many time consuming systematic measurements
- hunt for very weak signals
- have an inherent low-detection efficiency

•Interplay with MYRRHA maintenance schedule

- "Green field" facility at a nuclear site (SCK•CEN):
 - optimal lay-out of the facility: pre-separator RF-cooler post-separator (high mass resolution: $M/\Delta M > 10000$)
 - multiple ion beams simultaneaously : limited mass range for same element
 specific experimental hall requirements (e.g. neutron detection hall)

• ISOL@MYRRHA can deliver:

- pure RIB: selective ionization, chemistry, $M/\Delta M > 10.000$
- intense RIB x100 compared to the present ISOLDE
 - Imited number of isotopes at start-up,
 - important to leave options open
- RIB of good ion optical quality
- very long beam times
- optimal experimental conditions/lay-out/support

• ISOL@MYRRHA is based on proven technology

- Complementary to ISOL and In-Flight facilities:
 - HIE-ISOLDE, CERN (Switzerland)
 - SPIRAL2, GANIL (France)
 - TRIUMF (Canada)
 - ORNL (U.S.A.)
 - EURISOL (somewhere in Europe)

- FAIR, GSI (Germany)
- RIB factory, RIKEN (Japan)
- FRIB (U.S.A.)

- Neutron for Science (cfr. SPIRAL2) versus ISOL@MYRRHA
- Possible physics experiments:
 - Many examples given in field of fundamental nuclear physics, fundamental interactions, atomic physics, materials science, nuclear medicine

Nuclei of interest

- nuclei at or close to the N = Z line
 - nuclei with 0⁺ → 0⁺ transitions
 - **T = 1/2 mirror nuclei** (N = Z-1 \rightarrow N = Z+1; e.g. ²¹Na \rightarrow ²¹Ne)

- nuclei with **fast** (small log*ft*) and pure **Gamow-Teller transitions**

Possible subjects

1. $Ft^{0^+ \to 0^+}$

- Conserved vector current hypothesis
- unitarity of Cabbibo Kobayashi Maskawa quark mixing matrix
- right-handed currents
- scalar currents
- 2. searches for exotic weak currents
 - scalar currents
 - tensor currents

3. symmetry tests

- parity
- time reversal

Options: - improve quantities indicated by green & blue arrows

- if CVC accepted \rightarrow Ft-measurements test δ_c - δ_{NS} from theoretical models

- go for factor ~10 higher precision in Ft than available now for the 4 isotopes indicated

J,D, Jackson, S.B. Treiman, H.W. Wyld, Nucl. Phys. 4 (1957) 206

•β-ν momentum correlation
 > measure nuclear recoil
 > use ion traps

>βν-correlation from Doppler-shift of βdelayed γ-rays Doppler shift from precise measurement of γ-ray energy with a crystal spectrometer

•β-asymmetry

 $>\beta$ emission direction from polarised nuclei

R-correlation

 \succ combination of β particle spin polarisation and nuclear polarisation

Precision experiments with long beam times

- data taking (statistics)
- •instrument calibration (systematic errors)

- Candidate nuclei for spectroscopy experiments
 - Alkali and gaseous elements
 - He, Li, Ne, Na, C , N ?...
 - Decay spectroscopy (beta-decay)
 - implant in catcher foil / detector trap
 - polarized beams ? Ex. ¹¹Li
 - detectors for $\beta,\,\gamma,$ charged particles, n
- Reactions ??!
 - astrophysics, p capture n capture ?
 - requires post acceleration

Possible subjects

- β-delayed particle emission
 - $-\beta$ n/p emission
 - study of p/γ competition
 - multiple particle emission
 - β 2p : only data for ³¹Ar
 - β 2n :emission (very limited information ¹¹Li, ¹⁹C, ³⁰⁻³⁴Na, ⁵²K
 - β d/t emission (⁶He (β ,d); ⁸He (β ,t))
 - new branches
 - ⁸He (β,d); ¹¹Li (β,pn)
 - βt ^{29,30,32}Ne, ^{32,33,34}Na; βd ³²Ne, ³⁴Na

Energetically allowed decays

SCK · CER

Possible subjects

- decay of 'Halo' nuclei
 - decay into continuum
 - clustering
- Other cluster decays
 - $12C 3 \alpha$'s
 - decay of ¹²N/B
 - ¹³N/C add nucleon
 - decay of ¹³O/B
 - $160 4 \alpha$'s / 12C+ α
 - decay of 16N
- Multi-particle states
- Isospin symmetry ?
- All decays with low branching ratios

Naive picture: nucleons outside of normal nucleus are sensitive to correlations

- produce polarized ⁸Li
 - circularly polarized laser light
 - asymmetry in β-decay of ⁸Li
- Implant ⁸Li in surface
 - destroy asymmetry by sending in NMR signal
- Frequency and line shape tells about interaction between solid and ⁸Li

What happens near and interface?

- We go from 3D to 2D system
- Changes in magnetic, electronic and structural properties.

Questions:

How/why do the properties change?

On what scale ?

Motivation:

Better understanding of *both bulk and interface* Application in devices.

Solid state physics with nuclear probes : $^{8}Li \beta$ -NMR

•Broad range of applications for studying depth dependence of magnetic, electronic and structural properties on a nm length scale.

SCK • CEN

Emission channeling lattice location of radioisotopes

- Determination of lattice location
 - 0.1-0.01 Å precision
 - Single crystals
 - Characteristic emission pattern
 - Comparison with simulations
- Applicable for wide range of radio-impurities
- Application to semiconductors, metals and oxides
- A MYRRHA-based ISOL facility offers opportunities for emission channeling experiments, particularly for ⁸Li, ²⁰Na, and rare earth a emitters.

•ISOL@MYRRHA is an integral part of the MYRRHA project

•Workplan – roadmap (close contact between possible users and the MYRRHA team):

- > Approval and initial funding of the MYRRHA project
- Preliminary report
 - physics cases : look what will (is planned to be) done by 2020.
 - technical specifications from the users point of view
 - budgetplan/estimate
- Establishing a users group (including users outside of nuclear physics)
- Gathering ISOL expertise at SCK•CEN
- ≻Operational model
- ≻Time line

•Further applications for the full 2.5 mA beam (neutron factory)?