



# The Reliability Requirement for the XT-ADS & EFIT Accelerator

## Alex C. Mueller, CNRS-IN2P3, France & J-Luc BIARROTTE, CNRS-IN2P3 / IPN Orsay, France

On behalf of the EUROTRANS WP1.3 working group





## High-power proton CW beams

 Table 1 – XT-ADS
 Ind EFIT proton beam general specifications

|                          |                       | XT-ADS                                                                                                                        | EFIT                                                                                                 |  |  |
|--------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Maximum beam intensity   |                       | 2.5 – 4 mA                                                                                                                    | 20 mA                                                                                                |  |  |
| Proton energy            |                       | 600 MeV                                                                                                                       | 800 MeV                                                                                              |  |  |
| Beam entry               | Vertically from above |                                                                                                                               |                                                                                                      |  |  |
| Beam trip number 🧲       | < 20 pe               | er year (exceeding 1 second)                                                                                                  | < 3 per year (exceeding 1 second)                                                                    |  |  |
| Beam stability           |                       | Energy: ± 1 %, Intensity: ± 2 %, Size: ± 10 %                                                                                 |                                                                                                      |  |  |
| Beam footprint on target | Circula               | arnothing 5 to 10 cm, "donut-shaped"                                                                                          | An area of up to 100 cm² must be "paint-<br>able" with any arbitrary selectable<br>intensity profile |  |  |
| Beam time structure      |                       | CW, with 200 μs zero-current holes every 10 <sup>-3</sup> to 1 Hz,<br>+ pulsed mode capability (repetition rate around 50 Hz) |                                                                                                      |  |  |

## Extrememely high reliability required !!!

# **ADS linac reference scheme**



### SUPERCONDUCTING LINAC

Highly modular and upgradeable; Excellent potential for reliability ; Very good efficiency



Alex C. Mueller, AccApp 09, IAEA Vienna, May 4-8, 2009

# **Linac front-end**







#### 352 MHz RFQ characteristics

| Parameters                                                 | Values |
|------------------------------------------------------------|--------|
| Beam Current [mA]                                          | 30     |
| Frequency [MHz]                                            | 352    |
| Input Energy [keV]                                         | 50     |
| Output Energy [MeV]                                        | 3.0    |
| Inter-Electrode Voltage [kV]                               | 65     |
| Kilpatrick Factor                                          | 1.69   |
| $\mathcal{E}_{in}^{trans., n., rms} [\pi \text{ mm-mrad}]$ | 0.20   |
| Output Synchronous Phase [°]                               | -28.8  |
| Minimum Aperture [cm]                                      | 0.23   |
| Maximum Modulation                                         | 1.79   |
| $\mathcal{E}_{out}^{x., n., rms} [\pi \text{ mm-mrad}]$    | 0.21   |
| $\mathcal{E}_{out}^{y, n, rms} [\pi \text{ mm-mrad}]$      | 0.20   |
| $\mathcal{E}_{out}^{z, rms}$ [MeV-deg]                     | 0.09   |
| Electrode Length [cm]                                      | 431.8  |
| Beam Transmission [%]                                      | 99.9   |



352 MHz DTL characteristics

| Cavity       | Gaps (\overline{\vert}_s [^0]) |                        | Length<br>[cm] | W <sub>s,out</sub><br>[MeV] | Eacc*<br>[MV/m] |
|--------------|--------------------------------|------------------------|----------------|-----------------------------|-----------------|
| Rebuncher I  | 2                              | (-90°)                 | ~7             | 3.0                         | 2.79            |
| RT-CH        | 11<br>4<br>8                   | (0°)<br>(-40°)<br>(0°) | ~160           | 5.2                         | 2.72            |
| Rebuncher II | 2                              | (-90°)                 | ~7             | 5.2                         | 5.11            |
| SC-CH I      | 3<br>10                        | (-40°)<br>(0°)         | ~90            | 7.5                         | 3.99            |
| SC-CH II     | 4<br>10                        | (-40°)<br>(0°)         | ~105           | 10.4                        | 3.97            |
| SC-CH III    | 4<br>12                        | (-40°)<br>(0°)         | ~130           | 14.3                        | 3.98            |
| SC-CH IV     | 4<br>12                        | (-40°)<br>(0°)         | ~145           | 18.3                        | 3.96            |

\* Eacc: active acceleration gradient.

- Classical 4-vane RFQ with moderated Kp
- DTL booster using CH structures (KONUS beam dyn.)
- 17 MeV gained in less than 15 metres

Alex C. Mueller, AccApp 09, IAEA Vienna, May 4-8, 2009

# **Superconducting linac**



|   | 352 MHZ SPOKELINAC            | 704 MHz EL    | IPTICAL LINAC 0.5 |                  | 704 MHZ ELIPTICA | L LINAC 0.65 |
|---|-------------------------------|---------------|-------------------|------------------|------------------|--------------|
|   |                               | 90 MeV        |                   |                  |                  | 600 MeV      |
|   |                               |               |                   |                  |                  |              |
|   | Section number                | 1             | 2                 | 3                | 4                | CNTS         |
|   | Input Energy [MeV]            | 17            | 90                | 190              | 450              |              |
|   | Output Energy [MeV]           | 90            | 190               | 450              | 610              | In2p3        |
|   | Cavity Technology             | Spoke 352 MHz | Ш                 | Iliptical 704 MH | z                |              |
|   | Structure $\beta$             | 0.35          | 0.47              | 0.65             | 0.85             | $\wedge$     |
|   | Number of cavity cells        | 2             | 5                 | 5                | 6                |              |
|   | Number of cavities            | 60            | 30                | 42               | 16               | ORI          |
|   | Focusing type                 |               | NC quadrupole     | e doublet        |                  | J.Ne         |
|   | Cavities/Lattice              | 3             | 2                 | 3                | 4                |              |
| ſ | Synch Phase [deg]             | -40 to -18    |                   | -36 to -15       |                  | $\checkmark$ |
|   | Lattice length [m]            | 2.5           | 4.1               | 5.7              | 8.4              |              |
|   | Section Length [m]            | 50            | 61                | 80               | 34               |              |
|   | <gradient> [MeV/m]</gradient> | 1.4           | 1.6               | 3.4              | 4.7              |              |

- Modular, independently-phased accelerating structures
- Moderate gradients (50mT  $B_{pk}$ , 25MV/m  $E_{pk}$ ) & energy gain per cavity
- Overall length: about 225 metres

# **Final beam line to reactor**

- Final beam line guarantees the position of the beam spot and ensures that only particles of nominal energy are delivered (doubly-achromatic lines)

- Also guarantees the required "donut-shape" distribution at the target (redundant beam scanning)





**IP-EUROTRANS** 

\*

SIXTH FRAMEWOR PROGRAMME

# **Beam dynamics**

### Less than 10% emittance growth in the whole 17 MeV front-end

\*

 $\star$ 

(RFQ simulations with PARMTEQM, DTL simulations with LORASR)



# Less than 5% emittance growth in the 17-600 MeV SC linac section

(simulations with TRACEWIN)



-FUROTR

ee

SIXTH FRAMEWORI PROGRAMME

NS



## Goal = reach a frozen advanced design by 2010...



## **Advanced reference design**

## ... with assessed start-to-end beam dynamics

### **TraceWin (CEA)**

- Envelope code with 1st order space charge
- ✓ Interacting with GenLinWin for the SC linac longitudinal optimization

Benchmarked with: Transport (CERN), Beta (CEA), Path (CERN)...

### Partran (CEA)

- ✓ Multiparticle code, with 3D space charge routines.
- ✓ Coupling with TOUTATIS (CEA) for RFQ multiparticle simulations

Benchmarked with: Lions (GANIL), Impact (LANL), Dynamion (GSI), Parmila (LANL), Alodyn (INFN), Path (CERN)...

### Code package crucial capabilities

✓ <u>« Close to real » beam tuning procedures</u> using simulated diagnostics

✓ <u>Use of 3D field maps</u> for most of the elements (focusing magnets, RF cavities), high-order aberrations taken into account for the others (dipoles)

✓ Possibility to perform <u>statistical error studies</u>





# The reliability requirement



- Beam trips longer than 1 sec are forbidden to avoid thermal stresses & fatigue on the ADS target, fuel & assembly & to provide good availability. SPECIFICATION : less than 5 per 3-month operation cycle (MYRRHA / XT-ADS)
- Reliability guidelines have been followed during the ADS accelerator design
  - 1. Strong component design ("overdesign")
  - All components are derated with respect to technological limitations
  - For every linac main component, a prototype is being designed, built and tested
  - 2. Inclusion of redundancies in critical areas
  - Possible doubled front-end (hot stand-by injector), solid-state RF power amplifiers where possible...
  - 3. Enhance the capability of fault-tolerant operation
  - "Fault-tolerance" = ability to pursue operation despite some major faults in the system
  - Expected in the independently-phased superconducting linac (for both RF faults and QP doublets faults)

## **Local compensation method**



- **CONTEXT:** We have a strongly non-relativistic beam, and any energy loss will imply a phase slip along the linac, increasing with the distance, that will push the beam out of the stability region -> BEAM LOSS
- <u>GOAL</u>: Recover most of the SCRF cavities fault conditions without stopping/loosing the beam more than 1sec

### **STRATEGY:**

- "Local compensation method" in the case of a RF unit or cavity failure : adjacent cavities are retuned to provide the missing energy gain to the beam

- Requires independently-powered RF cavities, good velocity acceptance, moderate energy gain per cavity & tolerant beam dynamics design
- FAST retuning to be performed using pre-tabulated set-points databases stored into the digital LLRF FPGAs

