The XT-ADS core design

Gert Van den Eynde

SCK•CEN

AccApp09, Morning Satellite Meeting IV, “MYRRHA/XT-ADS”

May 6th, 2009
Acknowledgements

- This is the work of
 - The MYRRHA team at SCK•CEN
 - The MYRRHA Support team at SCK•CEN
 - Domain 1 of EUROTRANS (and especially Work Package 1.2 and Work Package 1.4)
 - A successful collaboration with JAEA

In short: people who want to see this machine constructed!
Contents

1. MYRRHA Draft2
2. A safety concern
3. New fuel pin and fuel assembly
4. Clean core configuration
5. Reference core
6. Analysis of irradiation capabilities
MYRRHA Draft 2
Fuel pin & assembly

- MOX 30 wt% Pu
- Solid pellets D 5.40 mm
- Clad: T91 OD 6.55 mm
- Neutron reflector (YSZ)
- Gas plenum
- Caps
- Pin pitch: 8.55 mm
- P/D = 1.305
- 91 pins
- Wrapper thickness: 1.75 mm
- Inter FA space: 2 mm
45 Fuel assemblies
Lattice 99 positions
350 MeV x 5 mA proton beam
$k_{\text{eff}} = 0.955$, $k_s = 0.960$
$P = 52 \text{ MW}_{\text{th}}$
Peak linear power: 352 W/cm
Hot pin Φ_{tot}: $4 \cdot 10^{15}$ n/cm2.s
Hot pin $\Phi_{>1\text{MeV}}$: $0.8 \cdot 10^{15}$ n/cm2.s
Hot pin $\Phi_{>0.75\text{ MeV}}$: $1 \cdot 10^{15}$ n/cm2.s
Increased proton energy

- At 350 MeV Bragg peak is significant
 - Heat production
 - Recirculation
- Switch to 600 MeV
 - \(I = 2 - 2.5 \) mA
 - Lower total power
 - Higher n/p
Contents

1. MYRRHA Draft2
2. New fuel pin and fuel assembly
3. Clean core configuration
4. Reference core
5. Analysis of irradiation capabilities
ULOF was worst case scenario (grace time)

No problem with the fuel
 - Safety limit of 2500°C is not reached

Clad (T91) does have a problem
 - Safety limit of 700°C is reached
 - After 10s for ULOF
 - After 10min for ULOHS
ULOF analysis

- Increase coolability in case of ULOF
 - Drastic increase of natural circulation potential
 - Reduction of the pressure drop over the core
 - Target value: 1000 mbar

- Consequences:
 - Larger pin pitch
 - Larger assembly pitch
ULOF analysis

- Risk at an ULOF is clad failure due to
 - High temperature
 - Fission gas pressure build-up

- Decision to increase the gas plenum
 - Larger fuel pin
 - Height of fuel assembly increases
 - Core height increases
XT-ADS
A new fuel pin

- Pellet with central hole
- Increased gas plenum
- Reduced YSB reflector
- Total height = 1400mm
 - (+200 mm)
XT-ADS
A new FA

- Pin pitch: 9.17 mm
- P/D = 1.40
- 90 fuel pins
- 1 instrumentation pin
- Wrapper thickness: 2 mm
- Inter FA space: 3 mm
Contents

1. MYRRHA Draft2
2. New fuel pin and fuel assembly
3. Clean core configuration
4. Reference core
5. Analysis of irradiation capabilities
XT-ADS

“Clean core”

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>XT-ADS Value</th>
<th>MYRRHA Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton beam energy</td>
<td>MeV</td>
<td>600</td>
<td>350</td>
</tr>
<tr>
<td>Proton beam current</td>
<td>mA</td>
<td>2.33 †</td>
<td>5</td>
</tr>
<tr>
<td>Proton beam deposited heat</td>
<td>MW</td>
<td>1.40</td>
<td>1.75</td>
</tr>
<tr>
<td>Total neutron yield per incident proton</td>
<td></td>
<td>15.3</td>
<td>6.0</td>
</tr>
<tr>
<td>Neutron source intensity</td>
<td>10^{17} n/s</td>
<td>2.23</td>
<td>1.9</td>
</tr>
<tr>
<td>Initial fuel mixture</td>
<td>MOX</td>
<td>(U-Pu)O$_2$</td>
<td>(U-Pu)O$_2$</td>
</tr>
<tr>
<td>Initial (HM) fuel mass</td>
<td>kg</td>
<td>857</td>
<td>514</td>
</tr>
<tr>
<td>Initial Pu enrichment</td>
<td>wt%</td>
<td>31.5</td>
<td>30</td>
</tr>
<tr>
<td>k_{eff}</td>
<td></td>
<td>0.95324</td>
<td>0.95521</td>
</tr>
<tr>
<td>k_S</td>
<td></td>
<td>0.95711</td>
<td>0.96007</td>
</tr>
<tr>
<td>MF = $1/(1-k_S)$</td>
<td></td>
<td>23.31</td>
<td>25.04</td>
</tr>
<tr>
<td>Source importance ϕ^*</td>
<td></td>
<td>1.095</td>
<td>1.127</td>
</tr>
<tr>
<td>Thermal power</td>
<td>MW</td>
<td>56.75 ‡</td>
<td>51.75 ‡</td>
</tr>
<tr>
<td>Specific power</td>
<td>kW/kgHM</td>
<td>66.22</td>
<td>101</td>
</tr>
<tr>
<td>Peak linear power (hottest pin)</td>
<td>W/cm</td>
<td>253</td>
<td>352</td>
</tr>
<tr>
<td>Average linear power (hottest pin)</td>
<td>W/cm</td>
<td>146</td>
<td>252</td>
</tr>
<tr>
<td>Max Φ_{total} in the core near hottest pin</td>
<td></td>
<td>3.31</td>
<td>4.1</td>
</tr>
<tr>
<td>Max $\Phi_{>1\text{MeV}}$ in the core near hottest pin</td>
<td>10^{15} n/(cm².s)</td>
<td>0.53</td>
<td>0.8</td>
</tr>
<tr>
<td>Max $\Phi_{>0.75\text{MeV}}$ in the core near hottest pin</td>
<td></td>
<td>0.72</td>
<td>1.0</td>
</tr>
</tbody>
</table>

(†) Normalised to fuel power density of 700 W/cm³
(‡) 210 MeV/fission
XT-ADS
“Clean core”

- Damage on inner vessel structures?
 - Core barrel
 - Core support plate
- From DM4-Demetra
 - Guidelines (some debate on realism...)
- Resulted in an exercise to maximally protect the core barrel
Added two extra rows

Evaluation of
- Steel pins
- Boron carbide pins
- Combination

Too penalizing for the core performances!
- Simply empty hex cans
- Increased distance fuel assembly – core barrel halves dpa rate
- “Clean core”
 - 5.5 dpa/360 EFPDs
- This core
 - 2.3 dpa/360 EFPDs
XT-ADS
Reference core

- Goals MYRRHA/XT-ADS
 - Flexible fast-spectrum irradiation facility
 - Demonstration ADS “at power”
 - Demonstration of transmutation of MAs

- Dedicated 8 positions in the core to house “In-Pile-Loops”
 - Penetration through the lid
 - Irradiation conditions (flux, temperature, environment) can be fixed at customers wish
1. MYRRHA Draft2
2. New fuel pin and fuel assembly
3. Clean core configuration
4. Reference core
5. Analysis of irradiation capabilities
XT-ADS Reference core

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton beam energy</td>
<td>MeV</td>
<td>600</td>
</tr>
<tr>
<td>Proton beam current</td>
<td>mA</td>
<td>2.1</td>
</tr>
<tr>
<td>Proton beam deposited heat</td>
<td>MW</td>
<td>0.94</td>
</tr>
<tr>
<td>Total neutron yield per incident proton</td>
<td></td>
<td>15.3</td>
</tr>
<tr>
<td>Neutron source intensity</td>
<td>10^{17} n/s</td>
<td>2.23</td>
</tr>
<tr>
<td>Initial fuel mixture</td>
<td>MOX</td>
<td>(U-Pu)O$_2$</td>
</tr>
<tr>
<td>Initial Pu enrichment</td>
<td>wt%</td>
<td>35</td>
</tr>
<tr>
<td>k_{eff}</td>
<td></td>
<td>0.955</td>
</tr>
<tr>
<td>k_{S}</td>
<td></td>
<td>0.960</td>
</tr>
<tr>
<td>MF = $1/(1-k_{S})$</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Source importance ϕ^*</td>
<td></td>
<td>1.12</td>
</tr>
<tr>
<td>Thermal power</td>
<td>MW</td>
<td>57</td>
</tr>
<tr>
<td>Specific power</td>
<td>kW/kgHM</td>
<td>66.22</td>
</tr>
<tr>
<td>Peak linear power (hottest pin)</td>
<td>W/cm</td>
<td>225</td>
</tr>
<tr>
<td>Average linear power (hottest pin)</td>
<td>W/cm</td>
<td>146</td>
</tr>
<tr>
<td>Max Φ_{total} in the core near hottest pin</td>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td>Max $\Phi_{>1\text{MeV}}$ in the core near hottest pin</td>
<td>10^{15} n/(cm2.s)</td>
<td>0.50</td>
</tr>
<tr>
<td>Max $\Phi_{>0.75\text{MeV}}$ in the core near hottest pin</td>
<td></td>
<td>0.66</td>
</tr>
</tbody>
</table>
Cycle analysis

- Proposed cycle
 - 90 days operation
 - 30 days maintenance
 - 90 days operation
 - 30 days maintenance
 - 90 days operation
 - 90 days maintenance

- Characteristics
 - 13 pcm/EFPD loss
 - 1200 pcm per operational cycle
 - 20% loss in power
 - Or...
 - 20% increase in beam
 - Or...
 - Compensate using burnable poison
5-step cycle

- Start with fresh core (75 fuel assemblies)
- Shuffle in 5 steps
- Question to be answered:
 Can we get to a stable cycle?
5-step cycle

- Reshuffle (in to out)
- Shuffle (out to in)
- w/o Shuffle

Burn up (days)

Criticality (keff)
Contents

1. MYRRHA Draft2
2. New fuel pin and fuel assembly
3. Clean core configuration
4. Reference core
5. Analysis of irradiation capabilities
Induced damage in steel material
- 31 rod lattice
- In-Pile-Loop
- In C74 position
Dpa rate: 17-18.5 dpa/year (avg 17.6)
• Induced damage in fuel clad material
 • 13 rod lattice
 • In-Pile-Loop
 • In K322 position
XT-ADS
Irradiation possibilities

- Dpa rate: up to 20 dpa/year
Contents

1. MYRRHA Draft2
2. New fuel pin and fuel assembly
3. Clean core configuration
4. Reference core
5. Analysis of irradiation capabilities
6. Updated target design
New XT-ADS nozzle design

MYRRHA draft 2
- no flow detachment allowed
- height of the target free surface must be actively controlled by LIDAR measurement device and MHD pump
- drag enhancer by vertical ribs in the concentric feeder channel seems to cause a lot of turbulence at the target surface

XT-ADS
- flow detachment enforced
- shape and height of the target free surface determined by nozzle geometry and flow rate → extra free surface act as buffer during beam transients → no active control needed
- new drag enhancer design with 140 vertical fins and accelerating flow → less turbulent flow and thus improved target surface stability
XT-ADS target loop design

MYRRHA draft 2

- Pump P1: mechanical impeller type
- Pump P2: MHD type that has to react within 10ms to compensate for sudden beam transients

XT-ADS

- Pump P1: MHD type
 - no moving mechanical parts in the LBE
 - improved reliability of the system
- Pump P2: MHD type
 - no need for rapid reaction to beam transients (relaxed pump specifications)
 - only needed to compensate for slow changes in the loop (changes in pipe friction, pump efficiency, ...)

[Diagram of XT-ADS target loop design]
Design drawings
Irradiation damage
Target outer wall

- Similar to cladding
- Only He rate is higher
 - Due to high energy protons
Irradiation damage
Target outer wall

- Similar to cladding
- Only He rate is higher
 - Due to high energy protons
Conclusions

- The design has matured a lot since “Draft 2”
- Feedback from
 - Safety
 - Design engineers
 - Neutronics
 - Thermal hydraulics
 - Accelerator
- Let’s go even further in CDT!