

Neutron Imaging at Spallation Neutron Sources

E.H. LEHMANN, A. KAESTNER

Paul Scherrer Institut, Deptm. Spallation Neutron Source, Switzerland

OUTLINE

- 1. Introduction: Motivation for Neutron Imaging
- 2. Facilities for Neutron Imaging at PSI
- 3. New neutron sources: accelerator driven \rightarrow pulsed
- 4. Challenges for Neutron Imaging at pulsed spallation sources
- 5. Status world-wide
- 6. Conclusions

1. Introduction: Motivation for Neutron Imaging

- •Alternative in non-destructive testing, comparable and complementary to X-rays
- •Different contrast mechanism, different transmission → different sample size
- •All modern imaging methods available also with neutrons (digital imaging, tomography, phase-contrast methods, time-dependent studies, ...)
- •HOWEVER: compared to synchrotron sources limitation in neutron beam intensity
- Still a lack of suitable Neutron Imaging facilities world-wide (only about 15)

1. Introduction: Motivation for Neutron Imaging

Many unique applications

fuel cell research - electro chemistry

nuclear fuel inspection – *nuclear technology*

studies for cultural heritage objects – *history, culture*

moisture distribution in various structures – *civil engineering*

Root growing behaviour – *biology, environmental research*

Geological objects + liquid distributuon (water, oil, salt, ...) – **geology**

...

X-ray vs. Neutron Imaging (example dispenser)

neutrons

X-ray

VS.

Neutron Imaging

- •X-rays interact with the electrons in the atomic shell
- Light elements (organic material)
 have low contrast only
- Heavy elements (e.g. metals) are difficult to transmit

Method available in many labs

- •(thermal) neutrons interact with the atomic nuclei
- Hydrogenous materials deliver high contrast
- Many metals can easily be transmitted

 Method available in only few dedicated labs

Comparison of thermal neutrons $\leftarrow \rightarrow$ X-rays

3. Facilities at PSI for neutron imaging

Competetive Neutron Imaging can be done at spallation sources!

- •Two facilities available: **NEUTRA** (thermal neutrons), **ICON** (cold neutrons)
- •In addition: X-ray tube with up to 320 kV high voltage for direct referencing
- •Beam diameter up to 40 cm, samples up to 500 kg, spatial resolution up to 10 micro-meters

→ Beam time can be booked via a proposal system (see below)

Large scale facilities at Paul Scherrer Institut, CH

Spallation neutron source SINQ @ PSI

- •In operation since 1997
- Driven by 590 MeV protons on a Pb target
- Intensity about 1.2 mA, corresponding to 1MW thermal power
- Installations for research with thermal and cold neutrons

Still the world's strongest spallation source

SINQ-Layout (Status 2009)

ICON-beam line @ SINQ

3. New spallation sources → pulsed

Neutron Imaging

SNS (Oak Ridge, USA) in operation since 2007 **VENUS**

J-PARC (Tokai, Japan) in test operation since 2008 considered

ISIS-TS2 (Rutherford Lab, UK) under construction **IMAT**

ESS (Europe) under consideration

No real installation for NI available for test purposes yet

probable

discussed later

Imaging at pulsed spallation sources?

- The energy selection option has much more potential than simple tests can demonstrate for the moment
- ➤ The combination of transmission and diffraction is very promising for material research and other studies
- ➤ A dedicated and well designed beam line is needed for this approach
- ➤ A stroboscopic option is important to study time-depending and repetitive processes
- ➤ All "standard" applications will be possible as well in the "integration mode"

Imaging at pulsed spallation sources!

Experiments at the Bragg edges of the materials

Energy selective imaging - research aspects

- ➤ Material research near Bragg edges of poly-crystalline materials
- > Structural (phases, textures) behavior under various and changing conditions visible
- ➤ Information on the macroscopic scale for large samples (higher transmission)
- ➤ Better quantification possible (beam hardening, scattering artifacts are less important)
- Link to the scattering methods, in particular stress analysis

Example for energy selective imaging (steel weld)

27 mm

Range: 3.5Å ... 4.5 Å, Δλ=0.29 Å

Double crystal mono-chromator CONRAD

Information derived and available from Bragg edges in transmission mode

- **▶** Phase identification and analysis
- Phase transition kinetics
- >Stress and strain
- Crystal orientation
- > Texture
- >?... because no experimental option, yet

Time dependent studies – stroboscopic option

Data obtained at ANTARES, FRM-2 TU Munich

CONCLUSIONS

- Similar to the stress scanning devices (initiated 10 years ago), E-selective imaging will be a powerful tool for material research in the future
- ➤ With the high spatial resolution, neutron imaging methods can deliver a more direct attribute to local material changes
- These findings can directly be compared to destructive material testing methods
- ➤ As a non-destructive method this approach will be unique
- Comparison to diffraction experiments will help to improve the interpretation work to do

Projects @ spallation sources

- •Best suitable beam port needed (intensity, spectrum, collimation, ...)
- •Layout of the neutron imaging facility different from scattering devices (FOV, flight path length, background requirements, ...)
- Detector development needed to use the neutrons most efficiently
- New research area!

Neutron Imaging

SNS (Oak Ridge, USA) in operation since 2007 VENUS

J-PARC (Tokai, Japan) in test operation since 2008 considered

ISIS-TS2 (Rutherford Lab, UK) under construction IMAT

ESS (Europe) under consideration probable

SNS Oak Ridge, USA

VERSATILE NEUTRON IMAGING INSTRUMENT AT THE SPALLATION NEUTRON SOURCE

SNS Oak Ridge, USA

ISIS, TS-2, Rutherford Lab, UK

J-PARC, JSNS, test beam line NOBORU

SUMMARY

- ➤ Neutron imaging with spallation neutrons will deliver new approaches for material research and many other applications
- Further improvement of the set-up and more experience will help to push the development of suitable installations at the new sources forward
- ➤ Pulsed neutron sources will be an important research tool for this investigations and other new options (polarized neutrons, time frames, phase effects, ...)

CONTACT

For the method:

http://neutra.web.psi.ch

For beam time allocation:

https://duo.psi.ch/duo/

Generally: eberhard.lehmann@psi.ch