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Motivation for the use of Accelerator Facilities

• Fast burst neutron facilities have been used to study the response of 
electronics to displacement damage and ionization

• The availability of fast burst neutron facilities is decreasing in the United 
States

• A new test methodology is being developed - high-fidelity computational 
models combined with testing of devices and circuits at alternative 
accelerator experimental facilities

• The computational models are initially validated at the fast neutron facilities 
and then applied to the test results at alternative facilities

• In the future, we will test and model at an alternate facility and then predict a 
neutron response



The Sandia Pulse Reactor SPR-III 

provided fast burst neutrons

Facility statistics – maximum pulse
• 4E14 n/cm2 1 MeV Si equivalent
• 120 krad (Si)

• 100 µsec pulse @ FWHM



SNL - Ion Beam Laboratory
IBL

High energy ions are focused into a 1x1 mm^2 

area to simulate neutron displacement damage 

conditions.
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6.5 MV Tandem van de Graaff with a nuclear microprobe 

• Ions: H to Au

• Si: 4.5, 10, 19, 28, 36 MeV

• Focused beam  (mm – µm)

• Currents: nA (mm beam) – fA (subµ beam)
• Pulse length > 200 ns – seconds with a 90 ns                        

rise & fall time



• LINAC operated in electron beam 
mode

• Electron energy tuned from 5 to 30 
MeV

• Pulse widths: 50 nsec to 50 µsec

• Beam currents: 0.1 to 2 Amps

• Dose rate: 5E6 to 4E13 rad(Si)/sec

– achieved with a variety of diffusers, 
target positions, and pulse widths

• Beam diameters (with ~ 80% 
uniformity) range from 1 cm for high 
dose rates to 40 cm for low dose rates

• The facility can operate with a 
maximum repetition rate of 2 pulses 
per second

Little Mountain Test Facility (LMTF)

is used to decouple displacement damage and 
photocurrent effects



Transistor current response to radiation is measured

Test circuit uses ASTM 
Standard F 980M-961 

techniques

Maximum SPR pulse on a BJT 2N2222

Gain = IC/IB Inverse Gain = IB/IC

The transistor gain is a traditional metric

base

collector

emitter



Si ions create a response in transistors 

similar to neutrons

SPR fast neutron

• 3E14 n/cm2 1 MeV Si Eqv

• 1E9 rad(Si)/sec

• 90 µsec pulse width FWHM

Displacement damage 

increases base current and
decreases collector current
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• 10 MeV Si

• 3E14 n/cm2 1 MeV Si Eqv

• 100 µsec pulse width FWHM



The spectra of defects as measured by DLTS in the base of pnp 

transistors that are responsible for the gain degradation are the 

same after neutron (including SPR-III and ACRR) and ion 

irradiations.

• DLTS peak amplitude is 

proportional to number of traps.

• The type and number of 

defects are the same for a given 1 

MeV Si eqv neutron fluence 

(matched late-time gain 

degradation).
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DLTS spectra of the base
region of a PNP device

Deep Level Transient Spectroscopy (DLTS) 
relates ion to neutron damage at late times
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Ie = 0.22 mA, 2N2222

• SPR-III gamma environment delays gain measurement compared to IBL

AF uncertainty ≤ 5%

The SPR-III early-time annealing factor can be matched using ion 

irradiations (simulating a wide range of SPR-III fluence values).

The transient annealing factors between SPR neutron
and ion beam irradiation are similar
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• Agreement between the annealing factors indicates that the annealing kinetics are similar for 

ion and neutron irradiations – critical for early-time predictive capabilities

SPR maximum pulse



Physics based modeling codes used in this study

• 1D

– Numerically solves diffusion-drift equations similar to commercial device simulation codes

– One dimensional

– Single transistor

– Includes defect production, migration & reactions, and charge change reactions by carrier 

capture & emission.

– Includes photocurrent generation with synergistic displacement damage and annealing 

effects

• Xyce

– a high performance Sandia developed SPICE compatible tool

– “zero dimensional to half dimensional”

– Single transistor to integrated circuits

– Includes defect migration & reactions and charge change reactions by carrier capture & 

emission – defect production is an input

– Includes photocurrent generation without synergistic displacement damage and 

annealing effects



Xyce and 1D are used to model transistor 

displacement damage at SPR and IBL

Xyce

experiment

Excellent agreement between the shape and the 

fluence dependence

IE=9 mA

IE=9 mA

experiment

Xyce

SPR

IBL

Time from center of pulse (s)



0.0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

B
a
s
e
 c

u
rr

e
n

t 
(m

a
)

 

 

Time (ms)

 SPR data

Simulations

(no free parameters)

  no damage

  with damage

-1.0E-04

1.0E-04

3.0E-04

5.0E-04

7.0E-04

9.0E-04

1.1E-03

1.3E-03

1.E-04 2.E-04 2.E-04 3.E-04 3.E-04 4.E-04 4.E-04

time (s)

b
a

s
e
 c

u
rr

e
n

t 
(A

)

IB2

Xyce

Xyce and 1D are used to model transistor 

photocurrent at SPR and IBL
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LMTF is used to calibrate Xyce 
transistor photocurrent models

Photocurrent data (red) 

and simulation (blue) for 

‘short’ pulses which 

are dominated by 

contributions from prompt 

photocurrent.

Photocurrent data (red) 

shown with simulated 

pulses where parameters

are calibrated against all 

data simultaneously.  

These 5 µsec pulses 
have contributions from 

prompt and delayed 

photocurrents and are thus

considered ‘long’ pulses.

Final calibration
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For future tests, we must calibrate IBL 

photocurrent vs LMTF photocurrent
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IBL photocurrent as a function 

of ion energy is being studied
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Summary and Conclusions

• SNL will use accelerator facilities to simulate displacement damage and 

ionization effects observed in electronics at fast burst neutron facilities

• We will use high fidelity computational models to confirm our ability to 

predict displacement damage and ionization effects at accelerator and 

neutron facilities

• Ultimately, when fast burst neutron facilities are not available, tests at 

alternate facilities, combined with computational models, will be used to 

simulate fast burst neutrons

• We have presented preliminary LMTF and IBL test and computational 

results 

• We observed excellent agreement between the experimental results and 

preliminary calculations at LMTF and IBL


