

Material Degradation Management of the Point Lepreau Reactor Coolant System by John Slade & Tracy Gendron

Feeder Degradation → Development of Aggressive AMP, 2003

- 18 bends replaced
- 2 forced outages
- Extended 2 planned outages
- Replacement energy ~50M\$
- 3% annual O&M budget
- Increased radiation exposure
 - o ~30% of total outage exposure
- Key inspectors reach annual limit
 Increased stakeholder concern about rupture

Successful Feeder AMP...

Reduced unplanned maintenance

- Incapability factor dropped from 5% to 1%
- Fewer emerging issues, allows focus on improvement initiatives
- Improved stakeholder confidence

AMP Approach

Based on review of industry best practices

- Follows general principles common to many industry guidance documents
 - Use existing station processes based on INPO AP-913
 - **o** Satisfy intent of NEI 03-08

The key to success was a focus on implementation - making plans easy to use

Presentation Purpose

Share the most useful and practical features of the Point Lepreau RCS AMP

- consider the end-user early in the development of AMPs

Acknowledgements

Practical experience implementing aging management activities:

Southern Nuclear, South Texas Project, Florida Power & Light, Beznau NPP, Biblis NPP, Palo Verde NPP, Ontario Power Generation, Gentilly-2 GS, Bruce Power, Babcock & Wilcox Canada, Dominion Engineering Inc., CNSC, EPRI, Point Lepreau GS, AECL.

Key Features of the AMP

- 1. Improved Integration of Management Activities
- 2. Improved Implementation of Technical Information
- 3. Application of Risk-Based Decision Making

Focus on implementation – easy to use

1. Integration of Management Activities – the need:

- Manage system-level degradation (radiation fields, thermal performance...)
- Manage requirements of systemoperating activities (chemistry control, warm-up procedures...)

Formal interfaces, clear responsibilities

1. Integration of Management Activities

 Using an RCS system-level plan
 modelled after industry-defined mandatory requirement of NEI 03-08, *Guidelines for the Management of Materials Issues*

2. Improved Implementation of Technical Information - the need:

AMPs not always used

- Too lengthy
- Include superfluous information
- Practical information not included
- Key R&D results not always used in AMPs
 - Not communicated in a practical way

Consistent, Easy-to-Use Plan Format

- Follows existing station processes, based on INPO AP-913
- □ < 40 pages</p>
- Information in easy look-up tables
- **Contains practical information, e.g.**
 - Mandatory maintenance & regulatory commitments
 - Clear acceptance criteria
 - Maintenance activity scope, schedule
 - Response plans

Link between Degradation and Management Activity – from Feeder AMP

Degrad-	Primary Strategy to Manage Degradation			
ation	Affected	Management	Management	
Mechanism	Components	Option	Activities	
Flow	All outlet	Inspection	Wall thickness	
Accelerated	locations,		measurements	
Corrosion	especially tight	Repair	Replace components	
	radius bends		projected to thin	
	& adjacent to		below minimum	
	Grayloc Hub		acceptable thickness	
		Chemistry	Control pHa to lower	
		Control	end of specification	
			(10.2-10.4) to	
			minimize FAC rate	

Key Factors Affecting Feeder Cracking

Primary Factors	Secondary Factors				
Stress					
Residual Stress : Based on physical evidence from spare bends and cracked feeders.	Operating Stress : postulated to increase susceptibility. No physical evidence.				
Material					
Cold Work/Hardness: associated	Ovality and Impurities : Postulated, based				
Fnyi	ronmontal				
Environmental					
Temperature: Cracks only in	FAC-generated hydrogen: Consistent				
outlet feeders where temp is 40°C	with all crack locations				
higher than in inlets. Consistent	Oxidizing Species and Impurities:				
with proposed mechanism.	Based on literature and test results				

Response Plan to Feeder Crack Inspection Findings

Cracked Feeders in 2007	Max. Crack Length	Condition Assessment Valid	Impact on Inspection and Maintenance Strategy				
Reportable Cracks in Outlet Tight Radius Bends:							
0-6	~25mm	Yes	No supplementary activities or changes to the plan required.				
>0	>30mm	Review required	Characterize indications after feeders are removed. Depending on the severity ofcracking, re-assess the validity of the condition assessment prior to reactor restart.				
Reportable Cracks in Inlet Bends:							
>0	N/A	No	Expand scope to all inlet 1st & 2nd bends; perform operational assessment prior to reactor restart.				

3. Application of Risk-Based Decision Making - the need

means to allocate resources for maximum benefit

- for activities in a single plan
- to allocate resources between plans

Concept of risk-reduction

Concept of Risk Reduction considers:

- Reduction in risk of degradation by the management activity
- Consequential costs of the management activity (\$cost, worker hazards, risk of additional damage...)
- Likelihood that the activity will be successful

Evaluating risk reduction provided by management activities

Risk Management Index

- qualitative comparison
- Calculated Change in Severe Core Damage Frequency, PSE
 - quantitative comparison

Risk Reduction of Activity Very Low High	High	RMI 1 : Activities prov reduction.	RMI 5 : Intrusive and			
		RMI 2 : Relatively easy maintenance access and high probability of success	RMI 3: More difficult access and/or lower probability of success	activities justified by high cost of not performing activity.		
	Very Lo <u>w</u>	RMI 4 : Low probabilition unacceptable condition justified by reasons conduction.	RMI 0 : No O&M activities justified			
		Reasonable		lot Justified for Risk Reduction		
		Consequential Costs				

Risk Management Index

Year of Operation

3. Concluding Remarks

Tangible benefits of program since 2003:

less unplanned maintenance
 fewer emerging issues
 improved stakeholder confidence

3. Concluding Remarks

Success attributed to:

considering the challenges that station engineers face in using these plans, early in their development

