ONSITE INSPECTION EXPERIENCE OF ELECTRIC EQUIPMENT IN LICENSE PROCESS OF THE CONTINUED OPERATION OF KORI UNIT ONE

-Site Inspection during review stage and refurbishment work-

O.P.ZHU, B.R.KIM, S.H.OH, N.S.JIN zhu@kins.re.kr

Korea Institute of Nuclear Safety (KINS), Deajeon city, Korea

Second International Symposium on Nuclear Power Plant Life Management 15-18 October 2007, Shanghai, China

CONTENTS

- Introduction: framework, requirements
- Environmental Qualification: Monitoring, EQ methods
- Time Limited Aging Analysis and EQ
- Interim Results of COI

1. Introduction

- Chronicle of Kori unit one
 - 1972 license for construction& operation
 - 1977 first criticality
 - 1988 first commercial operation
- Design life: 30 years
- Operating performance: Capacity Factor 92% for 5 years
- Original EQ documents are not fully meet Requirements
 - Turnkey based Project or early 70's standards for EQ

1. Introduction(1)

- Scoping and Screening the equipments for review
 - Criteria: 10CFR 54.4, 10CFR 54.21
- Replacement of equipments as follows
 - Anticipated Transient Without Scram mitigation system
 - Process control protection and monitoring instruments improvement
 - 4.16 kV switch gears, 125V Class 1E Battery banks
 - AAC diesel generator in Kori site.
 - Main and auxiliary transformers
 - Main generator and excitation system
 - Generator Circuit Breaker

1. Introduction(2-1): Legal Framework

- For continued operation beyond its design life time
 - Submission of PSR report
 - Korean Enforcement Decree of the Atomic Energy Act
 - Notice of the MOST: Aging management program included.
 - Aging management program
 - Scoping and screening results of aging management TLAA including the continued operation term
 - Operation experience feedback and important safety research results

1. Introduction(2-2): Framework for Inspection

- Periodic safety inspection (PSI)
 - By Notice of the MOST No.2005-10
 - Whether Existing licensing bases are met properly.
 - Well established inspection experience for 30 years
- Continued operation inspection (COI)
 - By Notice of the MOST No.2005-31
 - Whether measures and the implementation activities of the licensee are appropriate in view of newly upgraded standards; 'CLB'
 - New, review-oriented and dependent on inspectors' expertise
 - Parallel with safety review for continued operation including PSR

1. Introduction(3,4,5):AMP/TLAA/Experience

39 AMPs (MOST Notice 2005-31)

- 1. 6 items: Electrical Cables and Connections (3), Metal Enclosed Bus, Fuse Holders, Electrical Cable Connections
- Others(33: not related Electrical Equipment)

Three type of TLAA

- I. The analyses remains valid for the period of continued operation
- II. -- have been projected to the end of the continued operation : Temperature monitoring data of plant equipment / cable will be used for life extension
- III. The effects of aging on the intended functions will be adequately managed for the period: Ongoing Qualification

Operating Experience

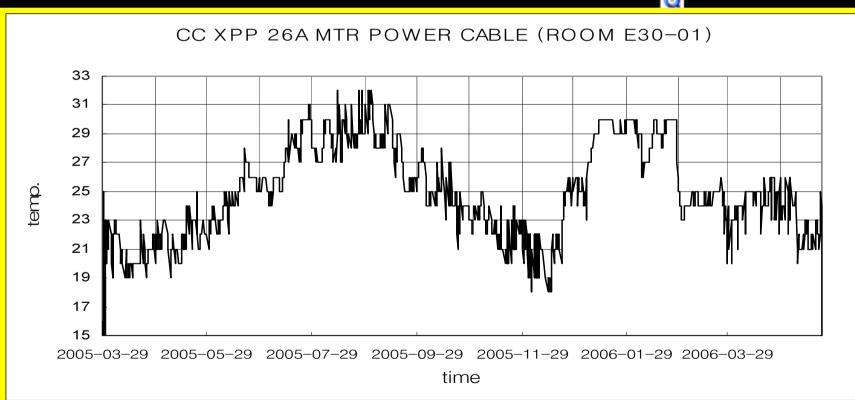
Items important from operational experiences and safety research results

2. Environmental Qualification(1): Req'mts

- Not established plant specific EQ program: 10CFR50.49
 - for there were no rigorous requirements for EQ in 1977
- 1st PSR was confirmed
 - K1 can operate safely during the continued operation period.
- EQ test reports of K1 : 1/3 equipments qualified by WH.
 - TLAA II: Temperature data used in aging evaluation on plant design temperature data or on plant actual data collected from temperature monitors.
- Recently replaced equipments including 740 items subjected to IEEE323(FSAR 3.11 revised)

2.Environmental Qualification(2-1)

- On-line EQ condition monitoring
 - FIG. 1. On-line temperature monitoring system for cables and motors
 - FIG. 2. Handhold PDAs for data communication



2. Environmental Qualification(2-2)

- On-line EQ condition monitoring
 - FIG. 3. One year record of on-line temperature monitoring system for cables

2. EQ Methods(3-1)

EQ by Analysis

- through the similarity analysis: a material aging analysis
 - 240 items including BA#.2 tank recirculation control valve IP

Type test

 764 items including RCDT pump discharge outside containment isolation valve limit switch

Operating Experience

 Partial type tests on vital components of the equipment under qualification are provided in support of this method

Combined EQ

- Analysis + Partial Type test
 - 24 items including electrical actuators and MOV motors

2. EQ Methods(3-2)

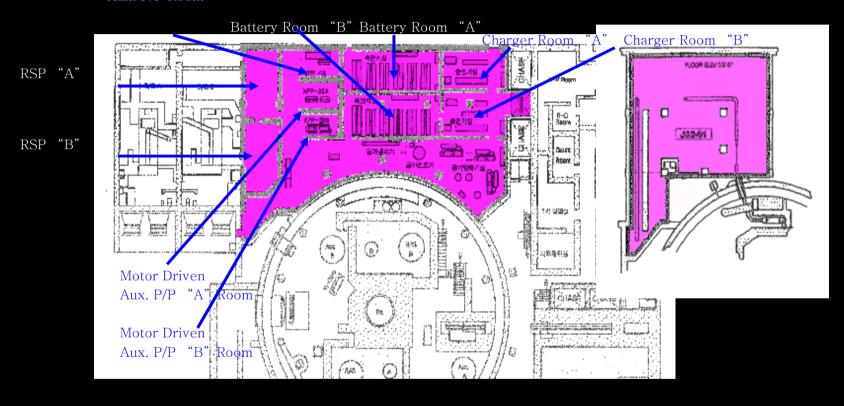
- Replacement with qualified equipment
 - 740 items including Feed water HDR to SG A isolation valve actuator
- Qualification of replaced equipment located in Harsh→ Mild zone
 - 11 items including 120V vital instrument panel 18A
- qualification maintenance procedure
 - to analyze whether the failure of equipment affect initial qualification.

Table 1. Kori unit 1 maintenance procedures for continued operation (Examples)

Туре	Title of work	Status of confirmation
Implementation of EQ	Replacement of electrical cables against non-compliance EQ requirements	Finished.
Improvement AMP for electrical and I &C system	Replacement of large motors	Finished.
Interconnection with PSA	Replacement of Class 1E Battery banks	Finished.
Improvement/Modification for heat exchanger and cooler	Replacement of 4.16kV Switch Gears (Non-1E)	Finished

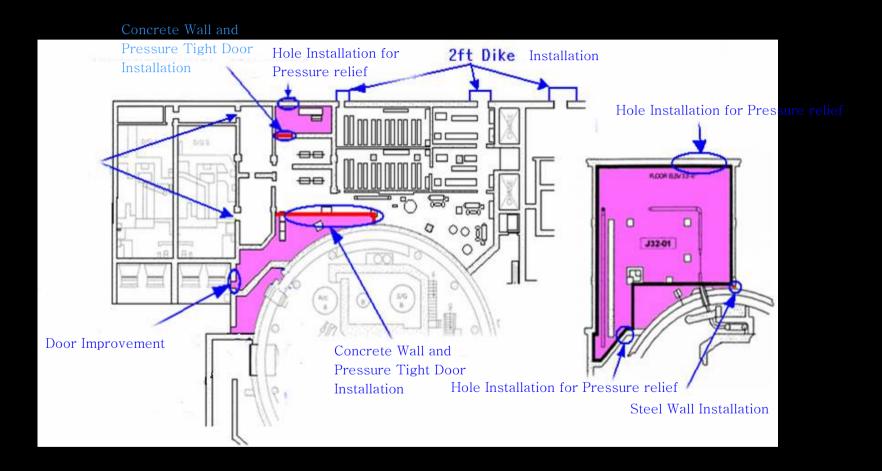
2. EQ Methods(4): Replacement

- Replacements of Class 1E batteries
 - Old Pb-Sb Battery(1200Ah) → Pb-Ca Battery(1704Ah)



2. EQ Methods(5)

TBN Driven



Harsh Zone (Before Improvement)

2. EQ Methods(5)

Harsh/Mild Zone (After Improvement)

3. TLAA and EQ Status [as 12 Oct 2007]

		TLAA(1)	TLAA(2)	TLAA(2)	SUM
1	E_ACT	40	12	14	66
2	E_MOTOR	0	12	6	18
3	E_MOV	10	12	14	66
4	E_PNL	0	11	0	11
5	E_SPLC	0	6	4	10
6	EPA	48	0	0	48
7	E_TMBLK	0	6	59	65
8	I_CNVRT	0	9	0	9
9	I_SEAL	56	4	150	210
10	I_LKDCTR	0	4	0	4
11	I_JNBC	22	4	0	26
12	I_LMSW	38	12	94	144
13	I_ELEM	9	40	46	95
14	AIR_SOL	52	0	26	78
15	I_SPLC	4	15	405	424
16	I_SOL	15	0	0	15
17	I_TMBLK	0	4	72	76
18	I_TRSMTR	0	57	4	61
SU	M	324	208	894	1,426

4. Interim result of COI

- Flame retardant coatings not used as fire barriers for cables
 - Cable trays before/ after cable coating in the same places
 - Material: fire proof cable coating system, PYRO-SAFE FLAMMOTECT-A

4. Interim result of COI

One hour fire barrier: Not finished on the flexible conduit

4. Interim result of COI(1)

- The issues solved are as follows:
 - Evaluation of irradiated cables such as PVC/ EPR cables / Replacement of Class 1E PVC Cables used in the containment building with EPR cables(4,070m:171 circuit)
 - Improvement of reliability program for EDG
 - AMP Clarification of electric connectors and for Non-1E/ Class 1E cables and coaxial cables of Nuclear Instrumentation and Radiation Monitoring System (NIS & RMS)

4. Interim result of COI(2-1)

- An important review of replacement or new installation of electrical equipments such as,
 - Digital redundant protective relay system(2/3 trip logic for primary / backup system)
 - New SF6 gas Generator circuit breaker/ Class 1E Battery and Inverters/ BOP process control system
 - Flame-retardant coatings not used as fire barriers for cables(based on RG 1.189, 1.8.2 & 4.1.3.2)[10]
- Particular issues not covered by AMP, but implemented for safety improvement is
 - One time inspection: bus duct and fuse holders of 3-phase 260V CRDM power source

4. Interim result of COI(2-2)

 One time inspection: bus duct and fuse holders of 3-phase 260V CRDM power source

4. Interim result of COI(3)

• OVERALL SCHEDULE FOR COI + PSI

Title of Inspection	Items to cover	Schedule 2007	
IAEA Peer Review	Review of Submitted Documents for CO and Onsite walk-through inspection.	23 July ~ 3 Aug.	
The 1st ~ 4th On-site Team inspection(COI)	 scoping and screening items walk-down of electric systems, reviewing the onsite procedure of AMP 	1) 22 Jan. ~ 26 Jan. 2)14 May ~ 18 May 3) 6 Aug. ~ 10 Aug. 4) 3 Sept. ~ 7 Sept	
Onsite inspection for Modification for CO+PSI	 4) performance commissioning test for new/ replaced electric equipments 5) Periodic Safety Inspection : e.g. Generator Circuit Breaker/ Fire Protection/ EDG/ Follow-up Action for EQ 	(until Dec. 2007)	

Thanks for your attention

