

Establishing a New ISI Strategy for Paks NPP

P. Trampus^a, S. Rátkai^b, D. Szabó^b

^a Trampus Consulting & Engineering, Hungary ^b Paks NPP, Hungary

2nd International Symposium **Nuclear Power Plant Life Management** Shanghai, China, 15 – 18 October 2007

4 x VVER-440 model 213 Commissioned: 1982 – 87 Design life: 30 years Extension: 20 more years

Hungarian ISI Program (1)

Origin: former Soviet nuclear regulation

OPB-82: Basic Regulations on NPP Safety
Assurance

(equivalent to Appendix A to 10 CFR Part 50)

- Normative Technical Documents (NTDs)
 - Rules for Construction and Safe Operation of NPP Pressurized Components
 - "Structural Examination" (equivalent to VT-3)
 - System Pressure Test
 - Control of periodic NDE results
 - PK 1514-72: Inspection Code (for construction!)
 - NDE acceptance standards

Hungarian ISI Program (2)

- Import (i.e. translation) of the NTDs
 - Valid from 1979 to 1996
- New set of Hungarian Safety Rules
 - Since 1997 (periodic upgrading)
- No detailed requirements for ISI
 - for periodic NDE:

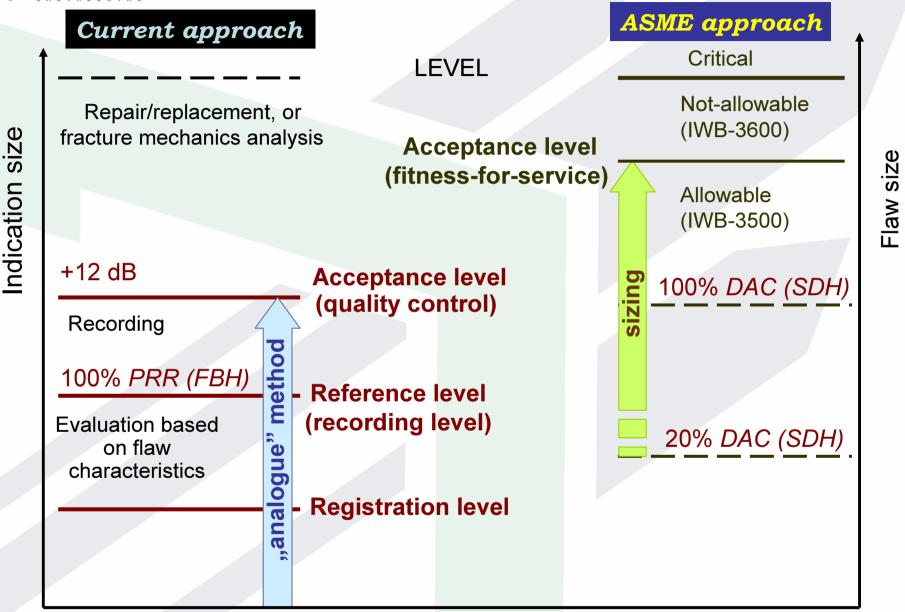
"...program has to be based on *authoritative* codes and standards.

– for pressure test:

"Structural Examination" and pressure test must be performed (Technical Inspection Plan)

 NPP's ISI program is being approved by the Regulator

Main Features of the ISI Program


- NDE acceptance standards do not serve FFS
 - Expressed in FBH equivalents
- Test pressure of reactor coolant pressure boundary
 - 192 bar (now 164 bar) operational pressure: 123 bar
- Inspection interval (for Safety Class 1 components)
 4 years (NDE + Pressure Test)

Consequences:

- Component overloading (hydrotest, fatigue)
- Unnecessary repair works (construction criteria)

Acceptance Standards

Evolution of the ISI Program

NTDs had no periodic revision Continuous improvement from the beginning:

- Ensuring completeness
 - Inclusion of emerging items (e.g. UT of austenitic welding, ET of SG tubing)
 - Introduce RPV OD inspection
- Strengthening ISI character
 - Decrease pressure test pressure (supported by AE during the test)
 - Increase of PRR level (appr. ASME XI)
 - Introduction of flaw analysis (similar to IWB, C, D-3600)

Life Management Context

- Former Soviet codes <u>are not authoritative</u>
- The Regulator's statement places a responsibility on the licensee, and
- Provides an opportunity for safety and efficiency improvement (LM goals)

Decision:

Adaptation of ASME Code requirements

Paks NPP's Objectives

Overall objective:

- Adaptation of a comprehensive standard, i.e. ASME requirements for
 - ISI,
 - maintenance (repair, replacement),
 - strength analysis

of pressurized components where appropriate

Specific objectives:

- Extend the current 4-year ISI interval up to an 8-year one
- Provide an opportunity to compare ISI environment with worldwide acceptable safety requirements
- Strengthen a consent across Europe for Paks NPP operational life extension

Implementation (1)

- ISI program development according to ASME XI
 - Comparison of the scope
 - ~90% coverage
 - Assessment of acceptance criteria
 - "two-level" evaluation concept
 - Adapting ASME pressure test parameters
 - Development of repair / replacement plan
- Rewriting NDE procedures according to ASME V – UT procedure handbook (FBH vs SDH)
- IST: on the basis of OM Code
- Design review of selected components
 - Justification of compliance with ASME III requirements
 - Inspection interval: 8 years (<10 y)

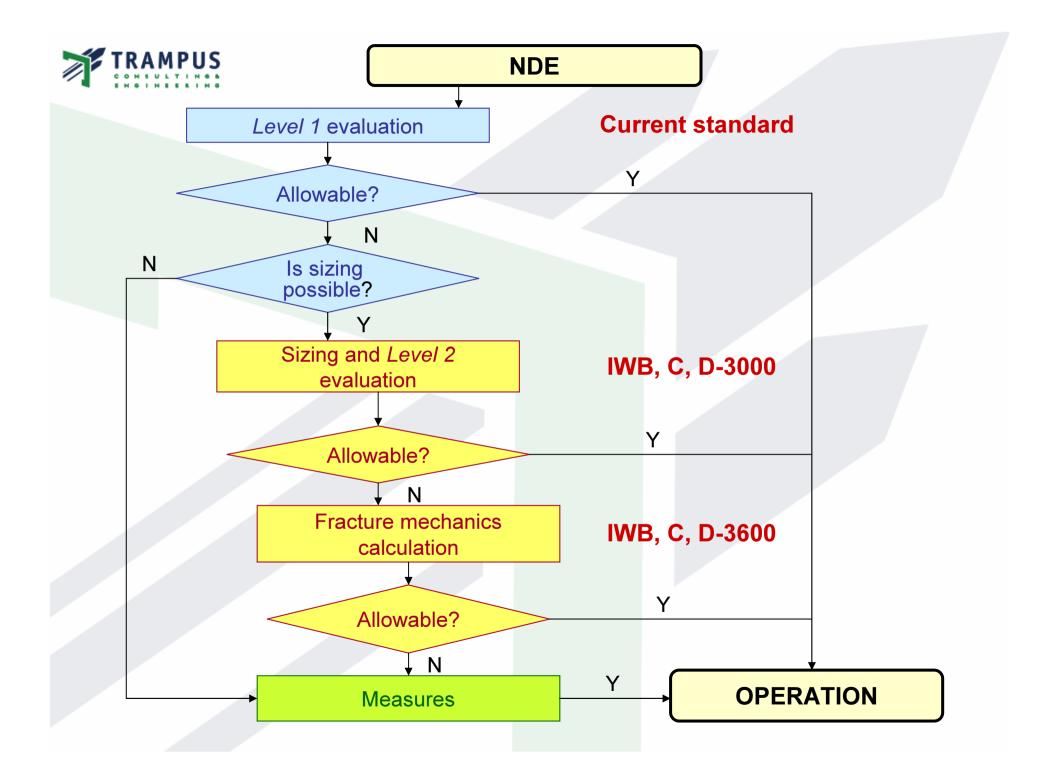
Justification of compliance with ASME III requirements

Substantial issue

- Preparation of a load catalogue
- Design review of selected components (according to ASME III)
 - Strength calculation
 - Fatigue calculation
 - Brittle fracture resistance
 - Over-pressure protection
 - Operational monitoring parameters

Implementation (2)

- Basis: Technical Inspection Plans
- Activities show conformity with ASME XI in
 - content,
 - format,
 - consistency
- Ageing management function strengthened
- Transition: validity of licensing conditions must be kept permanently
- Delicacy: plant is constructed by different code as inservice inspected
 - Comprehensive assessment of
 - legislative bases
 - code sections
 - regulatory guides
 - standards referred in both USA and Hungary



Two-level Evaluation Concept

- Further use of current criteria
 - Feasible
 - Ensures continuity
- FBH-SDH conversion

$$D_{FBH} = 0,67\sqrt{\lambda}\sqrt{D_{SDH} * s}$$

- Validation via experiments
 - Level 1: 100% PRR (FBH)
 - Good conformity with ASME XI

Conclusions

- Internationally acceptable level in structural integrity assessment of pressurized components
- Major contribution to Paks NPP operational life extension project