

Ageing Management Program of Reactor Pressure Vessel Internals components in a BWR Nuclear Power Plant.

Carlos R. Arganis Juarez National Nuclear Research Institute ININ Mexico.

Marco A. Sanchez M. Comision Federal de Electricidad. Mexico.

Introduction.

ININ is a Research Institute to give Scientific support to Laguna Verde NPP.

nija del Rendor 10, CAN Bastanan, conde 10080 Charao Madeila (Northadado, Northad

IAEA Projects

- IAEA Projects
- 1993-1996 MEX 4/044 SCC and FM
- > 1997-1998 MEX 4/047 SCC at BWR NPP
- > 1999-2000 MEX 4/047 A1 Core Shroud
- (RPVI's Studies)
- Since 2001 IAEA projects are
- focus in RPV (MEX 4/051 and MEX 4/053)
- 2003 Surveillance Program U2 with ININ collaboration

2 General Electric BWR-5 Units, Mark-II Containment.

Commercial operation: U-1 in July 1990; U-2 in April 1995.

License for 30 years.

US regulations have been adopted by the Mexican Authority. CNSNS

Current cycle: U-1, 13th cycle; U-2, 9th cycle.

Original licensed reactor thermal power is 1931

MWth, uprated to 2027 MWth in 1999. 5%

20% Extended Power Uprate Project.

PLiM program integrated other programs.

•Programs, studies and data based existed in the NPP.

- On line monitoring
- Surveillance Programs
- In Service Inspection Programs (ISI),
- In Vessel Visual Inspection Program (IVVI).
 Other inspection programs.
- Maintenance and operation data bases
- Maintenance Rule
- •Reliability programs (AP-913 Reliability Process)
- Ageing Management Programs
- •Extended Power Uprate Project •EPRI Full Membership

Ageing Management Pilots programs

Core Shroud (Extended to RPVIs) Reactor Pressure Vessel RFW Primary Container Cables

Project MEX 04/53 Status Report

Project Manual and Procedures:

- Manual is in the review process
- Long Term Plan procedure in the review process
- SSCs Selection procedure is being prepared.

Ageing evaluation procedure will be prepared

•ININ is working in Scooping & Screening processes based in CRF 54 and focusing in Renewal License.

Training:

Identification and Detection of Ageing Issues Specific training

Databases:

Selection of (software) alternatives is being performed. Access is using now.

instrumentation Penetrations U1, Steam U2 Dryers U1

Core Spray U1, U2 Top Guide U2 U1 Core Sparger U1 y U2

Core Shroud U1 y U2 Jet Pumps U1 y U2 Support Plate U2 U1 Core Plate U2 U1 Second International Sympostium on NER PLAIM, Shang U2, U1

Methodology used to assessment of Internals components in LVNPP.

Methologies for Structural Integrity used in some components.

U1 Water Chemistry.

	Conductivity	Chlorid es	Sulfates	Oxigen*
Cicle	(□S/cm)	(ppb)	(ppb)	(ppb)
1	0.240	3.6		/
2	0.130	2.56		/
3	0.180	2.90	4.62	
4	0.190	4.06	5.07	91.00
5	0.124	2.10	3.49	80.75
6	0.114	1.39	2.80	82.75
7	0.100	3.32	2.59	78.75
8	0.057	1.40	1.40	79.02
9	0.122	0.70	1.13	67.63
10	0.121	0.86	1.40	35.89
11	0.119	1.21	1.85	65.48
Average	0.136	2.19	2.71	72.66

Feed Water

Example of ECP values by CHECWORKS

	Weld/Region					
	H3 Inside Channel	H3 Outsid e Down comer	H4 Inside Channel	H4 Outside Down comer	H5 Inside Channel	H5 Outside Down comer
Cycle	mV. vs. SHE	mV. vs. SHE	mV. vs. SHE	mV. vs. SHE	mV. vs. SHE	mV. vs. SHE
1	277.07	224.24	262.11	289.99	265.75	230.37
2	302.31	276.31	286.49	276.71	264.41	251.33
3	303.07	275.27	288.67	278.25	265.39	251.58
4	300.16	276.39	288.61	278.38	264.01	258.36
5	299.33	220.83	291.53	242.02	265.75	230.37
6	301.07	275.79	290.03	270.46	262.30	241.66
7	306.83	284.95	288.20	282.24	266.84	259.81
8	300.27	279.81	290.28	274.79	259.90	244.12
9	294.22	268.81	291.67	259.52	258.46	227.53
10	241.39 Second Interna	tional Sym	posium on NP	P PL iM Sha	252 84 Inghai China	283.01
11	256.21	274.18	288.03	271.07	260.96	243.85
Average	289.26	259.88	283.01	271.15	262.41	247.45

Table 1. Main Internals components, safety function materials and guidelines associated.					
Internal Components	Safety function	Material	BWR VIP Associated document.		
Shroud	Yes	304L welds 308L Support ring alloy 600	76		
core spray internal Piping	Yes	304L welds 308L	18		
Core Spray Sparger,	Yes	304L welds 308L	18		
core plate	Yes	304 welds 308 and 308L	25		
top guide	Yes	304, 3304L welds 308L	26		
In core Housing-CRD housing-CRD Guide tube-Dry tubes	Yes	Several	47		
Jet Pumps	Yes	304, 304L beams X-750 low ring alloy 600 alloy 182 welds	41		
LPCI Coupling	Yes	304 welds 308L	42		
Weld internals attachments	Some of them	A533, 82/182/600 alloys	6A, 48A, 18A		

Second International Symposium on NPP PLiM, Shanghai China .

 \sim

1

Ageing Mechanisms example: Shroud

- Mainly IGSCC & TGSCC is possible
- IASCC on H4/H5 after cycle 14
- (CFE has calculated conservative Fluence, ININ refined calculations.)

Structural Integrity.

Programms Inspection IVVI. Shroud

WELD	INSPECTION METHOD	RFO	REMARKS	
H3, H4 & H5	UT	8 th 11th 18 th	Baseline inspection (Jun/2001). 1fst Reinspection (Sep/2005). 2nd Reinspection, Feb/2016. H3 will be reevaluated for 10 years.	
H1, H2, H6A, H6B & H7	UT	8 th 15 th	Baseline inspection (Jun/2001). 1fst Reinspection (Sept/2011).	
V1 through V10	EVT-1 or UT	7th, 9th	V3 through V8 inspected by EVT-1 no indications. Reinspection depends of results of horizontal welds (BWRVIP 76). V3 through V5 will be reevaluated after fluence refined calculations.	

Shroud.

- AMP is well advanced.
- Integrity is assure for next 10 years of operation (From 2005).
- Inspection program is regarding to BWRVIP
- Mitigation program is already implemented.
- It is necessary to evaluated the EPU impact in the Ageing Management Programs of all the RPVIs components

•The methodologies applied to the Internal Reactor Pressure Vessel components, which were designated like a pilot program within the scope of the Ageing Management Programs (AMP) and PLiM Program was discusses.

•The state of the art of the AMP's of the Internal was presented.

•The used of BWR-VIP Guidelines and ININ's experience in IGSCC and other ageing mechanism obtained in IAEA research projects was very important to the AMP for the RPVI's in the Mexican BWR units.

Thanks very much

