RACE-T Experimental Activities
An overview of the subcritical measurements preliminary to the accelerator coupling experiment

R. Rosaa†, M. Cartaa, M. Palombaa, S. Montib

aENEA, Via Anguillarese 301, 00123 Roma - Italy
bENEA, Via Martiri di Monte Sole 4, 40129 Bologna - Italy

Abstract. In the period between February 2004 – February 2006, in view of the past TRADE project and the subsequent RACE experiment planned in the frame of the EUROTRANS Integrated Program of the 6th European Framework Program, different experimental activities were carried out in the 1 MW TRIGA reactor operated by ENEA in his Casaccia Research Center near Rome. In that time the reactor operation was mainly in sub-critical conditions, with the exception of the critical reference core assessment at the beginning of the campaign where the maximum power was 50 W. The RACE-T campaign includes fission rate measurements (performed with a special instrumented fuel element,) investigation of different sub-critical configurations (with D/T generator in the core center,) and development of special devoted instrumentation and acquisition systems. The main outcomes of the intense experimental campaign will be illustrated.

1. INTRODUCTION

The objective of the European Integrated Project EUROTRANS[1] of the EURATOM 6th Framework Program is to bring answers to the high level nuclear waste transmutation in ADS. The EUROTRANS experimental activities have been grouped into the ECATS domain, namely Experiment on the Coupling of an Accelerator, a spallation Target and a Subcritical blanket.

The RACE-T experiment, formerly named TRADE[2], is part of ECATS. The European experimental teams performing the different experiments operated in the period 2004–2006 on different core configurations. In that period the reactor operation was exclusively in subcritical conditions, with the exception of the critical reference core assessment at the beginning of the campaign where the maximum power was 80 W. In this work we will focus on some selected RACE-T campaign outcomes:

— Characterization of the critical phase performed by fission rate traverses.
— Evaluation of the applicability of various experimental techniques for assessing a subcritical level. Those techniques are based on:
 • The system response to a pulsed neutron source, in particular the Area-ratio method obtained by a D-T generator.
 • The system response to a Source Jerk (SJ), in particular the Inverse Kinetics (IK) method applied to a SJ obtained by a D-T generator (the difference between SJ results by D-T generator and Cf-252 sources are analysed in [3].
 • The Source Multiplication technique.

† Corresponding Author: roberto.rosa@casaccia.enea.it
By means of the methods mentioned above, reactivity estimates were performed at different core locations and for three different “clean” (control rods withdrawn) subcritical core configurations, namely SC0 (~ -500 pcm), SC2 (~ -2500 pcm) and SC3 (~ -5000 pcm).

2. SUBCRITICAL LEVEL MEASUREMENTS: THEORETICAL OUTLINES

2.1. The Area Method

Pulsed Neutron Source (PNS) Area methods are based on the analysis of the responses shown by a subcritical system to an external source pulse. A typical response of this kind is shown in Fig. 1, where the contributions of prompt and delayed neutrons are evidenced.

In particular, the fundamentals of the Area-ratio method [4] consist in the evaluation of the absolute level of reactivity (in dollars) by measuring, independently by the detector position, the ratio between the area under the prompt peak and the delayed one after the injection of a neutron pulse in the subcritical system:

\[\rho_s = \frac{\text{Prompt neutron area}}{\text{Delayed neutron area}} = \frac{I_p}{I_t - I_p} \]

where the prompt area \(I_p \) is proportional to the detector response without delayed neutron precursors and the delayed area \(I_d \) is equal to the difference between the total area \(I_t \) and the prompt one. If the system response cannot be approximated by point kinetics, the reactivity value can apparently depend on the detector position \(r_D \), and we will obtain, in place of Eq. (1), relationships like:

\[\rho_s(r_D) = \frac{\text{Local prompt neutron area}}{\text{Local delayed neutron area}} = \frac{I_p(r_D)}{I_t(r_D) - I_p(r_D)} \]

In such cases, these spatial effects can be taken into account by calculating spatial correction factors obtained by:

--- Equivalent steady state methods obtained by solving time-independent inhomogeneous transport problems (see for example5 for an application to the MUSE-4 case).
--- Explicit time dependent analysis where time-dependent inhomogeneous transport problems are solved.
2.1.1. Equivalent steady state methods

Consider the neutron source represented by \(Q(r,E,\Omega,t) = Q(r,E,\Omega,t) \delta(t) \) and the signal due to the prompt neutrons alone; the prompt neutron flux \(\Phi_p(r,E,\Omega,t) \) will obey to the prompt time-dependent ordinary transport equation, with the usual free-surface boundary conditions and the initial condition \(\Phi_p(r,E,\Omega,0) = 0 \). Integrating from \(t=0 \) to \(t=\infty \), and defining the time integrated prompt neutron flux as

\[
\tilde{\Phi}_p(r,\Omega,E) = \int_0^\infty \Phi_p(r,\Omega,E,t) dt
\]

\(\tilde{\Phi}_p \) will satisfy the inhomogeneous (with external source) time-independent prompt transport equation with the initial condition and the condition \(\lim_{t \to \infty} \Phi_p = 0 \) (because the system is subcritical):

\[
\Omega \cdot \nabla \tilde{\Phi}_p + \Sigma_i \tilde{\Phi}_p = \langle \Sigma_{ins} \tilde{\Phi}_p \rangle + \left(\chi - \sum_i \beta_i \chi_i \right) \langle \nu \Sigma_i \tilde{\Phi}_p \rangle + Q(r,E,\Omega)
\]

where \(\beta_i \) and \(\chi_i \) are, respectively, the delayed neutron fraction and the delayed energy spectrum for each precursor group \(i \), and \(\chi \) is the total (prompt + delayed) spectrum. \(\Sigma_{ins} \) is the in-scattering cross section and, as usual, \(<> \) denotes integration. Analogously, the total time-integrated flux \(\tilde{\Phi}(r,\Omega,E) \) can be defined by integrating the transport equation over time; \(\tilde{\Phi} \) will then satisfy the inhomogeneous ordinary time-independent transport equation:

\[
\Omega \cdot \nabla \tilde{\Phi} + \Sigma_i \tilde{\Phi} = \langle \Sigma_{ins} \tilde{\Phi} \rangle + \chi \langle \nu \Sigma_i \tilde{\Phi} \rangle + Q(r,E,\Omega)
\]

Therefore, the reactivity level of the system given by Eq. (2) can be evaluated by means of a steady state Monte Carlo or deterministic multigroup methods. In particular, being \(\sigma_D \) the detector cross section, we can write:

\[
\frac{I_p(r_D)}{I_d(r_D)} = \frac{\iiint \sigma_D(r-r_D,E) \tilde{\Phi}_p dV dEd\Omega}{\iiint \sigma_D(r-r_D,E) (\tilde{\Phi} - \tilde{\Phi}_p) dV dEd\Omega}
\]

2.1.2. Explicit time dependent analysis

Explicit time dependent analysis by numerical solution of the time-dependent inhomogeneous transport problems is the direct way to evaluate spatial correction factors for the Area-ratio method. In any case, also for these methods we have probably to work out some tricky algorithm to evaluate, a priori, the delayed background shown in Fig. 1, without the need to run (useless?) multi-pulse CPU time-consuming cases in order to obtain a sufficient increase of the delayed background. Of course, it is of great interest to have explicit time dependent calculations in order to compare these results with those obtained by equivalent steady state methods.
2.2. Inverse Kinetics applied to a source jerk

The inverse kinetics method is a widely known method used to analyse transient behaviour of reactor systems. It is based on the inversion of the points kinetics equations which gives the reactivity versus time:

$$\rho_s = 1 - \frac{\Lambda}{\beta_{\text{eff}}} \cdot \frac{S_d(t) + S_{\text{eff}}}{n(t)} \cdot \frac{dn}{dt}$$

with the delayed neutron source equal to $$S_d(t)=\Sigma_i \lambda_i C_i(t)$$. The delayed neutron precursors group concentrations $$C_i(t)$$ are calculated using the measured flux $$n(t)$$ and the effective source $$S_{\text{eff}}$$ is adjusted so that the inferred reactivity is steady after the source jerk. Finally, the reactivity is obtained by averaging the reactivity on an appropriate time range after the source jerk. This method will be referred in the following as SJ-Gen technique.

2.3. The Source Multiplication technique

2.3.1. MSA approximation

Let us consider a reference subcritical state characterized by a negative reactivity level $$\rho_0$$ experimentally obtained by an independent method like a rod-drop measurement, and a generic subcritical core state $$i$$ characterized by the reactivity $$\rho_i$$, assuming both states driven by the same external neutron source. If we measure for both states some counting rates $$T$$ in a given core position $$r$$, the experimental reactivity for the state $$i$$ will be given by:

$$\rho_i^{\text{exp}} = \rho_0^{\text{exp}} \cdot \frac{T_0^{\exp}(r)}{T_i^{\exp}(r)} \equiv \rho_i^{\text{MSA}}$$

(3)

This is the so-called MSA approximation (from the French Multiplication Source Approchée), which presumes that the ratio $$T_0(r)/T_i(r)$$ does not depend on the position $$r$$.

2.3.2. MSM correction

If the above listed MSA hypotheses break we need for (calculated) correction factors. We can write for the reference state:

$$\rho_0 \cdot T_0(r) = -<\phi_0^* S> \cdot \frac{T_0(r)}{<\phi_0^* F_0 \psi_0>} \equiv -S_{\text{eff},0} \cdot \varepsilon_0(r)$$

(4)

were $$S_{\text{eff},0}$$ and $$\varepsilon_0(r)$$ denote, respectively, the effective source and the detector efficiency (at position $$r$$) for the state 0, and $$\phi_0^*$$ is the associated adjoint homogeneous flux solution. Analogously we can write for the generic subcritical state $$i$$:

$$\rho_i \cdot T_i(r) = -<\phi_i^* S> \cdot \frac{T_i(r)}{<\phi_i^* F_i \psi_i>} \equiv -S_{\text{eff},i} \cdot \varepsilon_i(r)$$

(5)
From (4) and (5) we obtain:

\[
\frac{\rho_i \cdot T_i(r)}{\rho_0 \cdot T_0(r)} = \frac{S_{\text{eff},i} \cdot \varepsilon_i(r)}{S_{\text{eff},0} \cdot \varepsilon_0(r)}
\]

(6)

By comparison with Eq. (3) we see that the MSA approximation is equivalent to assume that effective source and detector efficiency remain unchanged when passing from state 0 to state i. Eq. (6) must be evaluated by calculation, and we have to impose that:

\[
\frac{\rho_i^{\text{exp}} \cdot T_i^{\text{exp}}(r)}{\rho_0^{\text{exp}} \cdot T_0^{\text{exp}}(r)} = \frac{\rho_i^{\text{cal}} \cdot T_i^{\text{cal}}(r)}{\rho_0^{\text{cal}} \cdot T_0^{\text{cal}}(r)}
\]

Thus, we have to replace the MSA formulation (3) with the modified formulation:

\[
\rho_i^{\text{exp}} = \left(\frac{\rho_0^{\text{exp}} \cdot T_0^{\text{exp}}(r)}{T_i^{\text{exp}}(r)}\right) \frac{\rho_i^{\text{cal}} \cdot T_i^{\text{cal}}(r)}{\rho_0^{\text{cal}} \cdot T_0^{\text{cal}}(r)}
= \rho_i^{\text{MSA}} \cdot \rho_i^{\text{MSM}_{\text{cal}}}(r)
\]

The last term, the correction factors, depending on the position, have to be evaluated by calculation. This is the so-called MSM method (Modified Source Multiplication) which takes into account spatial and energetic effects, due to type and position of the detector.

3. EXPERIMENTAL SETUP

3.1. Description of the TRIGA reactor

The RC-1 TRIGA reactor, located at the ENEA Casaccia research centre nearby Rome, is a 1 MW Mark II reactor built in 1960. It is a light-water reactor cooled by natural convection, with a 284-mm-thick annular graphite reflector. The core has a 565-mm-diameter cylindrical configuration with 127 locations that are arranged in seven concentric rings, namely A, B, C, D, E, F and G (see Figs. 2 and 6). Each location can be filled with either a fuel element or some other component like graphite rods, a neutron source or a measurement channel. The stainless-steel-clad fuel material with 37.3-mm diameter and 381-mm height is a homogeneous mixture of uranium and zirconium hydride terminated at both the bottom and top by 87.5-mm-high cylindrical graphite slugs that act as axial reflectors. There are four boron-carbide control rods: two fuel-follower shim rods (SH1 and SH2), one fuel-follower safety rod (SEC) and one regulating rod (REG), not fuel followed.

The fuel elements consist of a stainless steel clad (AISI-304, 0.05 cm thick, 7.5 g/cm³ density) characterized by an external diameter of 3.73 cm and a total height of 72 cm end cap included (Fig. 4). The fuel is a cylinder (38.11 cm high, 3.63 cm external diameter, 5.9 g/cm³ theoretical density) of a ternary alloy uranium-zirconium-hydrogen (H-to-Zr atom ratio is 1.7 to 1; the uranium, enriched to 20% in U-235, makes up 8.5% of the mixture by weight: the total uranium content of a rod, on the average, is 197 g, of which 39 g is fissile) with a metallic zirconium rod inside (38.11 cm high, 0.5 cm in diameter, 6.49 g/cm³ of density). There are two graphite cylinders (8.7 cm high, 3.63 cm in diameter, 2.25 g/cm³ of density) at the top and bottom of the fuel rod.Externally two end-fittings are present in order to allow the remote movements and the correct locking to the grid.
3.2. Neutron sources

For the subcritical configurations, the reactor was coupled with the following neutron sources.

- A pulsed deuterium-tritium neutron generator, accelerating deuterium ions onto a tritium target, and producing 14.1-MeV-neutron bursts with strength 2×10^8 neutrons/s at maximal frequency. The frequency range spanned from 1 to 50 Hz. The pulse duration was less than 1 μs. The neutron generator was located at the core center A01.

- A Cf-252 source, with a strength of 0.4 Ci, was used to perform Source Multiplication experiments using a Fast Rabbit (FR) location in the B02 position in ring B (Fig. 8).
3.3. Instrumentation

For the characterization of the critical phase by fission rate traverses, a special fuel pin was used. This fuel is hollowed in the centre, and enables the fission chamber to be inserted inside the fuel. The hole has a diameter of 5 mm, allowing the insertion of the Ø1.5 mm fission chambers. The cross section of this special pin is shown in Fig. 5.

The position of the fission chamber in the special fuel pin corresponds to the mid plane of the core. A tight tube is fixed at the end of fuel and enables the connexion cable to leave the pool of the reactor. Before each measurement, one withdraws a fuel pin and replaces it by the special fuel pin.

For the evaluation of the applicability of various experimental techniques for assessing a subcritical level, the instrumentation consisted of fission chambers (labelled from A to D in Fig. 8), current-sensitive amplifiers and the X-MODE data acquisition system. The fission chambers were placed within the core region close to the reflector (see Fig. 8). The main purpose of X-MODE is to integrate in a single system all the features needed for reactor measurements. The main asset of X-MODE is an accurate time stamping capability that offers many methods of investigating acquired data.

IV. FISSION RATES MEASUREMENTS

Radial traverses enable one to analyse the shape of the fission rate in different energy ranges, and to look at possible asymmetry effects. Measurements were carried out for the reference critical configuration shown in Fig. 4, along the main G13-G31 diagonal (Fig. 6), in the positions G13, F11, E09, D07, C05, C11, D16, E21, F26 and G31. The measurements were performed in critical condition with a reactor power in the range 10÷80 W.

In order to cover the broadest range in energy, various types of deposits were used:

- Two U-235 fission chambers (n°1847 and n°331) for thermal fission rates.
- One Np-237 fission chamber (n°1523) for intermediate spectrum range.
- One U-238 fission chamber (n°861) for the fast energy range.
FIG. 6. Reference critical core configuration for the radial fission rates measurement

The results relative to the G13-G31 diagonal are plotted in Fig. 7 for each fission chamber.

FIG. 7. Normalized count rates on G13-G31 diagonal
The effect of the asymmetry shown in Fig. 7 is due to the presence of the tangential beam tube of important diameter situated near the core mid-plane, in the reflector (cf. Fig. 2). This tube removes an important part of the water and induces a very important local void effect.

4. **Subcritical Level Measurements**

4.1. **Core configurations**

The investigated core configurations, all characterized by main control rods withdrawn, are the following: one reference critical configuration (REF), the REF configuration with the regulation rod down (representing the reference subcritical configuration for the Source Multiplication method) and three subcritical configurations, namely SC0 (~ -500 pcm), SC2 (~ -2500 pcm) and SC3 (~ -5000 pcm), as shown in Fig. 8. The fission chambers, the Fast Rabbit (FR) pipe and the neutron generator were always placed in-core during the experimental campaign. It should be mentioned that the REF core configuration was critical with the regulating rod (REG) 51% inserted (cf. Figs. 2 and 8).

![Graphical representation of core configurations](image)

FIG. 8. Core configurations for the subcritical level analyses. One removes three fuel elements in C-ring to shift from one subcritical configuration to another. The Fast Rabbit (FR) pipe is in B02 and the neutron generator (DT) in A0

4.2. **Experimental results and data analysis**

The following methods have been into account for the inter-comparison: the Area-ratio technique (PNS-Area), the Inverse Kinetics-Source Jerk technique based on the transient caused by the neutron generator shutdown (SJ-Gen) and the Approximated Source Multiplication technique (MSA).
All the reactivity estimates for the three subcritical configurations are displayed in Fig. 9. For SC0, the uncertainties are about 1% for the PNS-Area technique, 3.1% for the MSA technique, 4.0% to 4.4% for the SJ-Gen technique. For SC2, the uncertainties are about 0.4% for the PNS-Area technique, 3.1% for the MSA technique, 6% to 7% for the SJ-Gen technique. For SC3, the uncertainties are about 0.5% for the PNS-Area technique, 3.1% for the MSA technique, 5% to 6.5% for the SJ-Gen technique.

FIG. 9. Comparison between PNS, SJ-Gen and MSA techniques with all rods up. The error bars correspond to a confidence level of 95% (1σ~700 pcm)
First, it appears that the PNS-Area and SJ-Gen reactivity estimates are always equal with a confidence level of 95%. Second, the MSA technique is clearly the most detector location dependent. The discrepancies from the PNS-Area estimates are about 1%-5% for SC0, 5%-19% for SC2 and 16%-40% for SC3. Conversely, the PNS-Area technique is the least detector location dependent with a spread of 1.22% at most for SC3.

5. **MULTI-PURPOSE DATA ACQUISITION SYSTEM**

The main purpose of X-MODE is to integrate in a single system all features needed for reactor measurements. It will also provide tools to improve data processing such as online treatments and data reduction algorithms. It is noteworthy that the great asset of X-MODE is a precise time marking capability, which is a powerful way of investigating acquired data. Time marking acts as a triggerless acquisition mode in which each event detected is counted and marked, as a result that the maximum information on the experiment is stored. In other words, data processing is not limited by the acquisition settings. Such a triggerless system is widespread in the field of particle physics and has previously been used in nuclear noise measurements. Nowadays, thanks to the improvements of storage capabilities, it can be useful in a large number of measurements.

6. **IAEA BENCHMARK**

6.1. **Generalities**

The results obtained from the flux measurements and from the subcritical level determination by different methods indicate, in the case of RACE-T experiments, the presence of the following effects:

(1) Asymmetry in the radial flux profile.
(2) Coherence between subcritical levels obtained by Area-ratio and SJ-Gen methods.
(3) Discrepancies between subcritical levels obtained by MSA and Area-ratio/SJ-Gen methods.

In particular, it cannot be excluded a priori the existence of a correlation between the points 1) and 3). In this frame, an explanatory role may be played by the evaluation of the correction factors to be applied to the measurements (especially MSA results). A calculation benchmark focused on the evaluation of the correction factors for the RACE-T case not only can help to clarify the above mentioned discrepancies but can also tackle the issue of the calculation methodologies to evaluate spatial/energy correction factors to be applied to subcritical level measurements in ADS.

Recently IAEA has endorsed the outcomes illustrated in this work from the RACE-T experimental campaign, and a computational benchmark has been launched in the frame of the Coordinated Research Project “Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems (ADS)” coordinated by IAEA [5]. The benchmark, named “pre-TRADE experimental benchmark”, will be focused on the evaluation, via computation, of the correction factors to be applied to the PNS Area-ratio and MSA results for the selected reactivity estimates to take into account the role of the spatial/energy effects on the rough experimental data.

6.2. **The TRIGA-RC 1 reactor burnup issue**

In this frame, a “basic” issue can be raised for what concerns the degree of knowledge of the fuel burnup status of the RC-1 TRIGA reactor, although it is not expected, a priori, that a detailed description of the fuel composition will provide a significant impact on the corrections factors to be calculated for the above mentioned subcritical configurations (SC0÷SC3), because several fresh pins are loaded into the core for such configurations.
As expected, in the case of the RC-1 TRIGA reactor, built in the sixties, the degree of the present knowledge of the fuel burnup status is obviously low. In any case, seizing the opportunity given by the IAEA benchmark, a relatively more accurate approach to the burnup issue is presently undergoing, although in approximated ways taking into account the objective difficulties inherent to such an issue.

The old estimation for the reference critical configuration for the “pre-TRADE experimental benchmark” is shown in Fig.10.

![FIG. 10. Old burnup evaluation for the REF critical configuration](image)

It may be seen from Fig. 10 that, for this particular configuration, several fresh fuel elements have been loaded. To (slightly) improve the present knowledge of the burnup status of the TRIGA RC-1 reactor, it has been prepared a new coherent\(^1\) burnup factors data set [6], which has been applied to all the core configurations loaded in the TRIGA RC-1 reactor since the reactor start-up. In Tab. 1 is shown a synthesis of the results relative to the REF critical configuration shown in Fig. 10, and it may be seen that the burnup variation is around 3.5%.

\(^1\) Satisfying the energy balance constraints, i.e. the old burnup factors, being prepared on the basis of conservative assumptions, were not normalized in a “standard” way.
Table 1. Burnup evaluations inter-comparison for the REF critical configuration

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>U-235 consumption (g)</th>
<th>Burnup %</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>554.25</td>
<td>12.73</td>
</tr>
<tr>
<td>Old</td>
<td>703.47</td>
<td>16.15</td>
</tr>
<tr>
<td>Δ</td>
<td>26.92%</td>
<td>3.43</td>
</tr>
</tbody>
</table>

Improvements respect to this provisional new evaluation are presently undergoing by means of the ERANOS codes system [7] which takes into account the fission products build-up, together with the fuel consumption, in function of the actual energy produced by each fuel element during its life. The burnup factors for the whole core and for each historical configuration of the TRIGA RC-1 reactor, together with the energy produced by each element, are obtained by the TRIGLAV code[8]. This new evaluation will provide the final compositions for the fuel elements to be used in the benchmark.

7. CONCLUSIONS

To have at one’s disposal a reference critical state, contrary to the foreseen situations in ADS, allows the inter-comparison of dynamic methods to measure the subcritical level (PNS Area-ratio, Source Jerk) with the static method MSA, which is usually taken as reference but requires for large MSM spatial correction factors at deep sub-criticalities.

Under this point of view, the RACE-T experiments have allowed the testing of different techniques to measure the subcritical level in ADS. Coherently with the outcomes from MUSE, the PNS Area-ratio method seems to be the most stable for what concerns the spatial effects, even if such stability has to be supported by theoretical and numerical confirmations.

For what concerns the Inverse Kinetics/Source Jerk technique, the measurements provided reactivity estimates always in excellent agreement with those obtained by the Area-ratio technique, although a discrepancy between PNS Area-ratio and Inverse Kinetics/Source Jerk results can be clearly be observed when increasing the subcriticality level.

The above mentioned theoretical and numerical confirmations will be obtained, hopefully, thanks to a computational benchmark, recently endorsed by IAEA, focused on the evaluation of the correction factors to be applied to the PNS Area-ratio and MSA results described in this work to take into account the role of the spatial/energy effects on the rough experimental data. In order to prepare the benchmark, a new evaluation of the TRIGA RC-1 fuel burnup level is presently undergoing.

ACKNOWLEDGEMENTS

The authors appreciate the efforts and support of all the scientists and institutions involved in EUROTRANS and the presented work, as well as the financial support of the European Commission through the contract FI6W-CT-2004-516520

2 Calculations are performed for a simplified geometry with heterogeneous fuel cell description in an infinite lattice.
REFERENCES

