9th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Takayama, Japan, November 9-11, 2005)

Conventional and Non-Conventional Fishbone Instabilities Driven by Circulating Energetic Ions

V.S. Marchenko, Ya.I. Kolesnichenko, and V.V. Lutsenko

Institute for Nuclear Research, National Academy of Sciences, Kyiv 03680, Ukraine

R.B. White

Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey, 08543, USA

Outline

- Double-kink fishbone instability caused by circulating energetic ions
 - High frequency (ω >> ω_{dia}) EPM in the symmetric case (|s₁|=|s₂|)
 - 2. "Doublet" instability in the non-symmetric case ($|s_1| \neq |s_2|$)
- Quasi-interchange fishbone mode induced by circulating energetic ions in low-shear tokamaks
 - 1. Motivation
 - 2. m = n = 1 fishbone in plasmas with $1 q_0 \sim \varepsilon_1$
 - 3. "Infernal" fishbones with arbitrary (*m*, *n*)
- Summary

Double-kink fishbone instability "Top-hat" eigenfunction for the (*m*, *n*) radial displacement amplitude

$$\lambda_{hk} = \frac{2\pi^2 R_0 m_{\alpha} q_s^2}{\omega_{c\alpha} r_{\min}^2 \xi_0^2 B_0^2 (|s_1| + |s_2|)^2} \sum_{\sigma} \int v^3 dv \int dP_{\phi} \int d\Lambda \times \tau_b \frac{\partial F_{\alpha}}{\partial E} \frac{\omega - n\omega_{*\alpha}}{\omega - k_{\parallel} v_{\parallel}} \left| \left\langle \left(\frac{v_{\perp}^2}{2} + v_{\parallel}^2 \right) \vec{\xi} \bullet \vec{\kappa} \exp[i(\omega - k_{\parallel} v_{\parallel})t] \right\rangle \right|^2$$

FIG. 1. A particle orbit crossing the region where a double kink mode is localized (shaded region): a, the orbit width exceeds the mode width; b, the mode width exceeds the orbit width. Notations: r_{s1} and r_{s2} are two rational surfaces with the same q(r), r_{min} is the radius where $q = q_{min}$, OA and OB are the cosines of the angles θ_{*1} and θ_{*2} at which a particle crosses the edges of the mode localization region.

A. The case of large orbit width

Short summary: EPM is absent; only diamagnetic fishbone mode is possible with strongly reduced growth rate (in comparison with internal kink case)

B. The case of small orbit width

\downarrow

Similar to internal kink case [R. Betti, Plasma Phys. Control. Fusion <u>35</u> (1993) 941]

 \bigvee

$$\lambda_{k} = \sum_{i=1,2} \lambda_{ki} = \sum_{i=1,2} \frac{1}{3} \frac{R_{0}}{r_{si}} \frac{q_{s}^{2}}{\left(|s_{1}|+|s_{2}|\right)^{2}} \left[-\frac{\Delta r_{b\alpha}}{|s|} \frac{d\beta_{\alpha}}{dr}\right]_{r_{si}} F\left(\frac{\omega}{\omega_{si}}\right)$$

$$F(x) = \frac{1}{\pi} \left\{ 10x - 8x^{3/2} \left[\tan^{-1} \frac{1}{\sqrt{x}} + \tanh^{-1} \frac{1}{\sqrt{x}} \right] + (1 + 3x^2) \ln \frac{1 + x}{x - 1} \right\}$$

$$\omega_{si} = \frac{|s_i| v_{\parallel \alpha}^2}{\omega_{c\alpha} R_0 r_{si}} \quad (\sim \omega_D \quad for \quad s \sim \frac{q}{2})$$

B1. High frequency EPM in the symmetric case $(|s_1|=|s_2|)$

$$0 = D(\Omega) = -i\Omega - \tilde{\lambda}_{c} - \pi_{\alpha}F(\Omega)$$

$$\Omega = \frac{\omega}{\omega_{s}} , \quad \pi_{\alpha} = -\frac{1}{3}\frac{m(m/n)^{2}}{|s|^{3}}\frac{V_{A}}{v_{\alpha}}R_{0}\left(\frac{d\beta_{\alpha}}{dr}\Big|_{r_{s1}} + \frac{d\beta_{\alpha}}{dr}\Big|_{r_{s2}}\right)$$

FIG. 2. Nyquist contour in the plane $(\text{R}e\,\Omega, \text{I}m\,\Omega)$ and its map in the plane $(\text{R}e\,D, \text{I}m\,D)$ when $s_1 = s_2$, $\lambda_c = -0.5$ for various π_{α} . Notations: $\Omega = \omega/\omega_{s1}$, $\omega_{s1} = |s_1|v_{\parallel\alpha}^2/(\omega_c R_0 r_s)$, $\pi_{\alpha} \propto -d\beta_{\alpha}/dr$

FIG. 3. Normalized growth rate, $\Gamma = \gamma/\omega_{s1}$, and the mode frequency, $\Omega = \omega/\omega_{s1}$, of the EPM fishbone instability in a plasma with a monotonic $\beta_{\alpha}(r)$ and $\tilde{\lambda}_{c} = -0.1$.

B2. "Doublet" instability in the non-symmetric case $(|s_1| \neq |s_2|)$

$$0 = D(\Omega) = -i\Omega - \tilde{\lambda}_{c} - \pi_{\alpha 1}F(\Omega) - \pi_{\alpha 2}F\left(\frac{|s_{1}|}{|s_{2}|}\Omega\right)$$

$$\pi_{\alpha i} = -\frac{8}{3} \frac{m(m/n)^2}{(|s_1| + |s_2|)^2} \left(\frac{V_A}{v_{\alpha}} \frac{R_0}{s} \frac{d\beta_{\alpha}}{dr}\right)_{r_{si}}$$

- m = n = 1 mode with $f_1 \approx 15$ kHz and $f_2 \approx 20$ kHz
- off-axis tangential NBI [$\beta_{\alpha}(r)$ non-monotonic]
- two *q* = 1 surfaces due to off-axis NBI CD
- doublet frequencies comparable with the fishbone frequency during the radial injection (consistent with $\omega_s \sim \omega_D$)

FIG. 4. Map of a Nyquist contour in the case of "doublet" instability for $\tilde{\lambda}_c = -0.01$: solid line, $s_1/s_2 = 0.6$, $\pi_{\alpha 1} = -2.5$, $\pi_{\alpha 2} = 2.4$; dotted line, $s_1/s_2 = 0.2$, $\pi_{\alpha 1} = -1.5$, $\pi_{\alpha 2} = 1.35$.

Quasi-interchange fishbone mode induced by circulating energetic ions in low-shear tokamaks

Motivation

- "Hybrid" regime with *q* ≈ *const* ≈ *1* in the central core has been proposed recently as a third operational scenario for ITER
- Flat q(r) with $m nq \sim \varepsilon$ in the central core are typical for high β discharges in ST
- Strong NBI (and/or *α*-heating for ITER)

\Downarrow

Kinetic stability in the presence of energetic ions

<u>m = n = 1 fishbone in plasmas with $1 - q_0 \sim \varepsilon$ </u>

MHD counterpart: quasi-interchange mode [Wesson (1986)]

• Eigenfunction of "cellular" character (in contrast with rigid kink for $1 - q_0 >> \varepsilon$)

 \downarrow

• Finite average power transfer at the fundamental resonance $\omega = k_{\parallel} v_{\parallel}$ for all particles deposited in the shear-free core

\bigvee

• Possibility of the EPM with $\omega \sim (1 - q_{\theta}) v_{\alpha} / R_{\theta} \ll v_{\alpha} / R_{\theta}$

Dispersion relation for the QI fishbone mode

$$\begin{split} \mathbf{E} &= \frac{R_0}{\pi^2 B_0^2} (\delta W_{MHD} + \delta W_k) - \frac{\omega^2}{\omega_A^2} N \\ &N = \frac{1}{2\pi^2 R_0} \int d^3 r |\vec{\xi}_{\perp}|^2 \\ \delta W_k &\equiv \frac{1}{2} \int \vec{\xi}_{\perp}^* \bullet \nabla \delta \Pi_{\alpha}^k d^3 r = -\frac{\pi^2 m_{\alpha}}{\omega_{c\alpha}} \sum_{\sigma} \int v^3 dv \int dP_{\phi} \int d\Lambda \times \\ \tau_b \frac{\partial F_{\alpha}}{\partial \mathbf{E}} \frac{\omega - \omega_{*\alpha}}{\omega - k_{\parallel} v_{\parallel}} \left| \left\langle \left(\frac{v_{\perp}^2}{2} + v_{\parallel}^2 \right) \vec{\xi}_{\perp} \bullet \vec{\kappa} \exp[i(\omega - k_{\parallel} v_{\parallel})t] \right\rangle \right|^2 \\ \vec{\xi}_{\perp} &\bullet \vec{\kappa} = -\frac{1}{R_0} \xi_1 \{r[\theta(t)]\} \cos[\theta(t)] \exp\{i[\theta(t) - \phi(t) - \omega t]\} \\ r[\theta(t)] &= \vec{r} - \Delta_{\alpha} \cos[\theta(t)]; \quad \Delta_{\alpha} = \frac{q(\vec{r})}{v_{\parallel} \omega_{c\alpha}} \left(\frac{v_{\perp}^2}{2} + v_{\parallel}^2 \right) \\ \theta(t) &= \frac{v_{\parallel}}{q(\vec{r}) R_0} t; \quad \phi(t) = \frac{v_{\parallel}}{R_0} t \\ F_{\alpha} &= \frac{\sqrt{2}m_{\alpha}}{\pi E_{\alpha}} p_{\alpha}(\vec{r}) H(\mathbf{E}_{\alpha} - \mathbf{E}) \mathbf{E}^{-3/2} \delta(\Lambda) \\ &\downarrow \\ \frac{R_0}{\pi^2 B_0^2} \delta W_k &= -\frac{2}{\pi^2} \rho_{\alpha}^3 R_0 F\left(\frac{\omega}{k_{0\parallel} v_{\alpha}} \right)_0^\beta dr \left| \frac{d\xi_1}{dr} \right|^2 \frac{d\beta_{\alpha}}{dr} \\ F(\Omega) &= \frac{1}{5} + \frac{\Omega}{4} + \frac{\Omega^2}{3} + \frac{\Omega^3}{2} + \Omega^4 + \Omega^5 \ln\left(1 - \frac{1}{\Omega}\right) \end{split}$$

Model fast ion distribution

$$\beta_{\alpha}(r) = \beta_{\alpha 0} \left[1 - \left(\frac{r}{r_0}\right)^4 \right]$$

$$\bigcup$$

Eigenmode equations

$$\frac{d}{dr}\left\{ \left[(\mu-1)^2 + l_{\alpha}(\omega,r) - \frac{\omega^2}{\omega_A^2} \right] r^3 \frac{d\xi_1}{dr} \right\} - G\{\xi_1\} = C\{\xi_2\} \\ \frac{d}{dr} \left[\left(\mu - \frac{1}{2} \right)^2 r^3 \frac{d\xi_2}{dr} \right] - 3 \left(\mu - \frac{1}{2} \right)^2 r\xi_2 = C^+\{\xi_1\} \\ \left[G \sim O(\varepsilon^2), C \sim O(\varepsilon) \right] \rightarrow \text{Waelbroeck & Hazeltine (1988)} \\ \int_0^a drf(r) C\{g(r)\} = \int_0^a drg(r) C^+\{f(r)\} \\ l_{\alpha}(\omega, r) \equiv \frac{8}{\pi^2} \frac{\rho_{\alpha}^3 R_0}{r_0^4} F\left(\frac{\omega}{k_{0\parallel} v_{\alpha}} \right) \beta_{\alpha 0} H(r_0 - r) \\ \text{In the shear-free core } [\mu \sim I + O(\varepsilon)] \\ \frac{d}{dr} \left\{ \varepsilon^{-2} \left[(\mu - 1)^2 + l_{\alpha}(\omega, r) - \frac{\omega^2}{\omega_A^2} \right] r^3 \frac{d\xi_1}{dr} \right\} - 4 \left(\frac{r}{4} \frac{d\beta_p}{dr} + \beta_p \right) \frac{d}{dr} (r^3 \xi_2) \\ \frac{d}{dr} \left\{ r^3 \frac{d\xi_2}{dr} \right\} - 3r\xi_2 = -4r^3 \frac{d}{dr} \left[\left(\frac{r}{4} \frac{d\beta_p}{dr} + \beta_p \right) \xi_1 \right] \\ \xi_2 \equiv \varepsilon \xi_2, \quad \varepsilon \equiv \frac{a}{R_0} \end{cases}$$

=

$$\beta_{p}(r) = -\frac{8\pi R_{0}^{2}}{r^{4}B_{0}^{2}} \int_{0}^{r} \hat{r}^{2} \frac{dp_{c}}{d\hat{r}} d\hat{r}$$

Asymptotic solution in the shear-free region

$$\hat{\xi}_2 \propto \frac{r}{r_2} + \sigma \left(\frac{r}{r_2}\right)^{-3}, \quad \mu(r_2) = \frac{1}{2}$$

$$\downarrow$$

Dispersion relation

$$\sigma = \left(\frac{r_2}{a}\right)^2 \int_0^a \frac{\left[\varepsilon \beta_p(r)\right]^2}{(\mu - 1)^2 + l_\alpha(\omega, r) - \omega^2 / \omega_A^2} \left(\frac{r}{r_2}\right)^5 \frac{dr}{r_2} \approx \left(\frac{r_2}{a}\right)^2 \frac{\varepsilon^2}{(\mu_0 - 1)^2 + l_\alpha(\omega) - \omega^2 / \omega_A^2} \int_0^r \beta_p^2(r) \left(\frac{r}{r_2}\right)^5 \frac{dr}{r_2} + \sigma_{res}(\omega)$$

$$\sigma_{res}(\omega) = \left(\frac{r_2}{a}\right)^2 \varepsilon^2 \beta_p^2(r_A) \left(\frac{r_A}{r_2}\right)^5 \lim_{\eta \to 0r_A - 0} \int_{-\infty}^{r_A + 0} \frac{dr / r_2}{(\mu - 1)^2 - (\omega + i\eta)^2 / \omega_A^2} = i\pi \left(\frac{r_2}{a}\right)^2 \left[\varepsilon \beta_p(r_A)\right]^2 \frac{(r_A / r_2)^5}{r_2 + (\partial / \partial r)(\mu - 1)^2} = i\sigma_1(\omega)$$

Final form of the dispersion relation

$$\begin{cases} (\mu_0 - 1)^2 \left[1 - \left(\frac{v_\alpha}{V_A}\right)^2 \Omega^2 \right] + \hat{\beta}_\alpha F(\Omega) \\ \left[\sigma - i\sigma_1(\Omega) \right] = \\ \left(\frac{r_2}{a}\right)^2 \int_0^{2r_0} [\mathcal{E} \ \beta_p(r)]^2 \left(\frac{r}{r_2}\right)^5 \frac{dr}{r_2} \\ \Omega = \frac{\omega}{k_{0\parallel} v_\alpha}; \quad \hat{\beta}_\alpha = \frac{8}{\pi^2} \frac{\rho_\alpha^3 R_0}{r_0^4} \beta_{\alpha 0}; \quad \rho_\alpha \equiv \frac{v_\alpha}{\omega_{c\alpha}} \end{cases}$$

Infernal fishbone modes with arbitrary (*m*,*n*) Eigenmode equations in the shear-free core with $|q_{\theta} - m/n| \sim \varepsilon$

$$\frac{d}{dr}\left\{ \left[\left(\frac{\mu}{n} - \frac{1}{m}\right)^2 + \frac{l_{\alpha}}{(mn)^2} - \left(\frac{\omega}{\omega_A mn}\right)^2 \right] r^3 \frac{d\xi_m}{dr} \right\} - \left(m^2 - 1\right) \left[\left(\frac{\mu}{n} - \frac{1}{m}\right)^2 - \left(\frac{\omega}{\omega_A mn}\right)^2 \right] r\xi_m - \frac{\varepsilon^2}{2m^2} \left(r \frac{d\beta_p}{dr} + 4\beta_p\right)^2 r^3 \xi_m + \frac{\varepsilon^2}{m^2} \left(1 - \frac{n^2}{m^2}\right) \left(r \frac{d\beta_p}{dr} + 4\beta_p\right) r^3 \xi_m = \frac{\varepsilon^2 n}{average magnetic well} \frac{\varepsilon^2 n}{2m^2(m+1)} r^{1+m} \left(r \frac{d\beta_p}{dr} + 4\beta_p\right) \frac{d}{dr} (r^{2+m} \hat{\xi}_{m+1}) \frac{d}{dr} \left(r^3 \frac{d\hat{\xi}_{m+1}}{dr}\right) - [(m+1)^2 - 1]r \hat{\xi}_{m+1} = \frac{\varepsilon^2 n}{n}$$

$$-\frac{m+1}{2n}r^{2+m}\left[\left(r\frac{d\beta_p}{dr}+4\beta_p\right)r^{1+m}\xi_m\right]$$

General solution for ξ_{m+1}

$$n\hat{\xi}_{m+1} = -\frac{1}{2}(1+m)r^{-(2+m)}\int_{0}^{r} \left(\hat{r}\frac{d\beta_{p}}{dr} + 4\beta_{p}\right)\hat{r}^{2+m}\xi_{m}d\hat{r} + er^{m}$$

$$\downarrow$$

$$\begin{aligned} \frac{d}{dr} \left\{ \left[\left(\frac{\mu}{n} - \frac{1}{m}\right)^2 + \frac{l_{\alpha}}{(mn)^2} - \left(\frac{\omega}{\omega_A mn}\right)^2 \right] r^3 \frac{d\xi_m}{dr} \right\} - \\ (m^2 - 1) \left[\left(\frac{\mu}{n} - \frac{1}{m}\right)^2 - \left(\frac{\omega}{\omega_A mn}\right)^2 \right] r\xi_m - \frac{\varepsilon^2}{m^2} \left(1 - \frac{n^2}{m^2}\right) \frac{d}{dr} (r^4 \beta_p) \xi_m = \\ (m^2 - 1) \left[\left(\frac{\mu}{n} - \frac{1}{m}\right)^2 - \left(\frac{\omega}{\omega_A mn}\right)^2 \right] r\xi_m - \frac{\varepsilon^2}{m^2} \left(1 - \frac{n^2}{m^2}\right) \frac{d}{dr} (r^4 \beta_p) \xi_m = \\ (m^2 - 1) \left[\left(\frac{\mu}{n} - \frac{1}{m}\right)^2 - \left(\frac{\omega}{\omega_A mn}\right)^2 \right] r\xi_m - \frac{\varepsilon^2}{m^2} \left(1 - \frac{n^2}{m^2}\right) \frac{d}{dr} (r^4 \beta_p) \xi_m = \\ (m^2 - 1) \left[\left(\frac{\mu}{n} - \frac{1}{m}\right)^2 - \left(\frac{\omega}{\omega_A mn}\right)^2 \right] r\xi_m - \frac{\varepsilon^2}{m^2} \left(1 - \frac{n^2}{m^2}\right)^{2\nu-2}, \quad \hat{\beta}_p \sim 1 \\ (m^2 - 1) \left[\frac{\varepsilon^2}{m^2} \frac{d}{dr} (r^4 \beta_p) r^{m-1} \right] \frac{1}{(2\nu + m)^2 - 1} r^{m-1} \\ (m^2 - 1) \left[\frac{\omega}{r} \left(1 - \frac{r}{m}\right)^{2\nu} \right] \Rightarrow \beta_p = \hat{\beta}_p \left(\frac{r}{a}\right)^{2\nu-2}, \quad \hat{\beta}_p \sim 1 \\ (m^2 - 1) \left[\frac{\varepsilon^2}{(2\nu + m)^2 - 1} \right] \frac{\omega}{(2\nu + m)^2} r^{2\nu} + 4\nu (\nu + m) \left[(m/nq - 1)^2 - (\omega/\omega_A n)^2 \right] \right] \\ \hat{\xi}_m = \frac{1 + m}{n(\nu + m)} \left(\frac{r_m}{m}\right)^{-2(m+1)} r + \sigma_m \left(\frac{r}{m}\right)^{-(2+m)}, \quad \mu(r_{m+1}) = \frac{n}{m+1} \\ Asymptotic matching \\ \sigma_m = \frac{1 + m}{n(\nu + m)} \left(\frac{r_m}{m}\right)^{-2(\nu + m)} \left(\frac{r_0}{a}\right)^{2(\nu + m)} \times \\ \frac{\varepsilon^2 \hat{\beta}_p^2 (\nu + 1)^2}{\left[(2\nu + m)^2 - 1\right] \ell_a (\omega) / n^2 + 4\nu (\nu + m) \left[(m/nq_0 - 1)^2 - (\omega/\omega_A n)^2\right]} + \sigma_{res} \\ Model \mu - profile \\ \mu = \frac{n}{m+1} + \left(\mu_0 - \frac{n}{m+1}\right) \left[1 - \left(\frac{r}{r_{m+1}}\right)^{2\lambda}\right] \\ \bigcup \\ \sigma_m \approx \frac{m}{m+2} \left(1 - \frac{m+1}{\lambda}\right), \quad \lambda \ge m+2 \end{aligned}$$

Continuum damping

$$\sigma_{res}(\omega) = i\pi \frac{m+1}{8\lambda n} \frac{\varepsilon^2 \hat{\beta}_p^2 (\nu+1)^2}{\nu(\nu+m)} \left(\frac{r_{m+1}}{a}\right)^{2(\nu-1)} \left[\frac{(m+1)\omega}{n\omega_A}\right]^{\frac{\nu+m}{\lambda}-2} \equiv i\sigma_{1m}$$

<u>m=2 fishbones in NSTX (Darrow *et al.*, poster EX/P2-01 in the 19th IAEA Fusion Energy Conference)</u>

Parameters

80 keV D co-NBI, m = 2/n = 1, $q_0 \approx 1.7$, $R_0/a = 1.5$, $v_a/V_A \approx 2$, $r_2/a \approx 0.6$ (v = 6, $\lambda = 4$) \Rightarrow [$\sigma_2 = 1/8$, $\sigma_{12}(\omega) = const$, $r_3/a \approx 0.85$, $r_0/a \approx r_2/a$]

Marginal MHD stability without fast ions
$$(l_a = \omega = \theta)$$

 $4n \nu \sigma_m \left(\frac{m}{nq_0} - 1\right)^2 = \frac{(1+m)(\nu+1)^2}{(\nu+m)^2} \left(\frac{r_{m+1}}{a}\right)^{-2(m+1)} \left(\frac{r_0}{a}\right)^{2(\nu+m)} \varepsilon^2 \hat{\beta}_p^2$
 $\hat{\beta}_p = \frac{\beta_0}{\varepsilon^2} \left(\frac{m}{n}\right)^2 \frac{\nu}{\nu+1}$
 \downarrow

 $\beta_0^{marg} \approx 0.35 \Longrightarrow \sigma_{12} \approx 0.55$

At the margin of fishbone stability ($Im \ \Omega = \theta$)

$$\hat{\beta}_{\alpha}^{crit} = \frac{192}{195} \frac{4\Omega^2 (2\mu_0 - 1)^2}{\operatorname{Re} F(\Omega) + (\sigma_{12} / \sigma_2) \operatorname{Im} F(\Omega)}$$
$$\operatorname{Im} F(\Omega) \left[4\Omega^2 \left(\frac{\sigma_{12}}{\sigma_2} + \frac{\sigma_2}{\sigma_{12}} \right) - \frac{\sigma_{12}}{\sigma_2} \right] = \operatorname{Re} F(\Omega)$$
$$\bigcup$$
$$\Omega \approx 0.6 \Rightarrow \hat{\beta}_{\alpha}^{crit} \approx 2.5 \times 10^{-2}$$
$$\approx 40 \, cm, \, R_0 \approx 100 \, cm, \, \rho_{\alpha} \approx 20 \, cm, \, \left\langle \beta_{\alpha} \right\rangle = \frac{2}{3} \left(\frac{r_0}{a} \right)^2 \beta_{\alpha 0}$$

$$\bigcup_{\left<\boldsymbol{\beta}_{\alpha}\right>} \approx 2.4\%, f \approx 46 \, kHz$$

 r_0

Experiment $\langle \beta_{\alpha} \rangle \approx 2\%, f \approx 45 \, kHz$

Summary

- High frequency ($\omega \gg \omega_{dia}$) fishbones can be destabilized by circulating energetic ions for both internal kink mode and double kink mode
- For reversed shear with $|s_1| \neq |s_2|$, and off-axis deposition of energetic ions, "doublet" instability is possible (consistent with observation in ASDEX-U)
- In plasmas with shear-free core and $1 q_{\theta} \sim \varepsilon_1$, quasiinterchange fishbone mode can be destabilized with frequency $\omega \sim k_{\theta \parallel} v_{\alpha} \ll v_{\alpha} / qR$ (particularly relevant for ST)
- Infernal fishbones with arbitrary (*m*, *n*) and similar properties are also possible in weak-shear plasmas
- Reasonable quantitative agreement with NSTX observations
- Work on high frequency "infernal" fishbones, with $\omega \sim (k_{\theta \parallel} + S/q_{\theta}R)v_{\alpha}$ and $S = \pm 1$, is in progress