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Alfvén Cascades (reminder)

e Alfvén Cascades (ACs) are shear Alfvén eigenmodes localized
at the minimum ¢ surface (r = r,) in plasmas with magnetic

shear reversal.

e The eigenmode frequency w = wam n + Aw is slightly higher
than the local shear Alfvén wave frequency :
vi = (m — ngs)?vi /(Rq.)?.

2 _ 1.2
WAm,n = k||*

e During current ramp-up ¢, decreases with time which leads to

the characteristic sweeping of the AC frequency.

e The frequency sweeps up to wrag = va/(2Rqy), where

transition to TAE mode occurs.
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Experimental motivation (I)

e Measurements with Phase Contrast

Imaging (PCI) on Alcator C-mod show ‘ i
a second harmonic density perturbation. 4{’:'5;‘ |
5 ?y:u s
TEoe MR

The second harmonic signal is faint at

the edge magnetic probes, suggesting a
narrow radial profile of the perturbation.
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[J. A. Snipes et al. 31st EPS Conference, London, 2004]
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Experimental motivation (II)

e Our goal is to calculate the second harmonic density

perturbation driven by quadratic terms in the MHD equations.

e The analysis can potentially be used to estimate the AC

amplitude at the mode center.

e Instrumental non-linearities may be a factor in interpretation
of PCI measurements. This issue needs to be addressed

separately.
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Preliminary remarks

e The shear Alfvén wave has a relatively weak nonlinearity. The
quadratic nonlinearities vanish in a uniform plasma with
straight magnetic field lines.
= Consider coupling to compressional Alfvén and acoustic

perturbations.
e The double AC eigenmode frequency
2w = 2(WAm.n + AW) = Wa2m 2n + 2AwW

is near the double mode number branch of the Alfvén
continuum. This can lead to resonant enhancement of the 2w

perturbation.
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Mode representation
Magnetic field representation: B = By + (B; + B2 + c.c.), where

B ox e ™ By ox e %! etc.

Use the plasma velocity representation

bg . 1 .
— 20V 4+ —V
\41 BOXV 1—|-BOVL 15
bo 1
- Y b — |\ b
Vo BOXV 2—I-BOV¢ 2 + &by,

where the shear (®), compressional (V) and acoustic (§) functions

represent the three degrees of freedom of the plasma.

The first harmonic acoustic perturbation &; is negligible for the
main part of the AC. We exclude it by assuming g = 0.
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Derivation path

e The known linear AC eigenfunction (®; and ¥;) produces a

quadratic nonlinear force in the momentum balance equation.

e We calculate the driven compressional (¥s), acoustic (£2) and
shear Alfvén (®5) perturbations to ®; from the momentum

balance equation.

e We use &, &5, V¢, U5, and &; in the second harmonic

continuity equation

)
TV (pvi) + V- (pova) = 0.

to determine the 2w density perturbation

P2 = Pyp2 - P2 T PP, W, T Py T PU, T Pey-
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Momentum balance equation (I)

Consider the three “projections” of the momentum balance

equation:
e Acoustic equation: by - {Momentum balance eq.}
e Compressional equation: V - {BLO {Momentum balance eq.} J

Bo

e Vorticity equation: V - {? x {Momentum balance eq.}]
0

The acoustic and compressional equations give
qu%? PPV, Péay P, < pCID%a Py =

The dominant contribution to py arises from shear Alfvén perturbations.

e The p;vy term in the continuity equation generates

b b
Paz ™ po | = X VB |-V |VE; - [ V x =2 )| ~ m?pe®?/(r*RB?)
. Bo By

® pg, is determined by quadratic terms in the vorticity equation.
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Momentum balance equation (II)

The second harmonic vorticity equation has the form

1 P 2 _ 2 _ 2 _
4—i ?“d 2 (ij2 _k||2 — 16m—q)2 (ij—2 _k||2 =
r dr dr \ U4 r2 V4

N . . . _
2@ @ B m_Q&)Q D dd, d*®, - &b, - d2k|| d®?
dr dr 1 Var2 " dr

Bor

m

)
dr dr? L dr3

r2

where D = w? /04 — Eﬁ,
Oy = Oy (r) exp [i(ngd — mb — wt)],

Dy = Oy(r) exp 2i(ng — mh — wt) —iZ|.

The derivation involves flux surface averaging (denoted by bar).
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Recall AC eigenmode theory

Eigenmode equation with normalized coordinate x = (r — r,)m/r,:

d dd . -
(S + :c2)d_$1 — (S +2%)®; + Q19 = 0. (1)

Effects of hot ions and toroidicity are included in Q1 = Qnot + Qtor:

W%AQERQ qx We, hot _L dﬁhot 4+ 2me, (6* + 2Ail<)
02 (m —ng) r2q¢! \ wa rer. L —4(m —ngs)? :

Q1 = oo dr

Solutions to (1) exist if Q1 > 1/4. The distance Aw to the Alfvén

continuum is determined by the eigenvalue S

2walAw mq, R2%*qg?

~2 2 11 ’
’UA req, M — NQgx

S

Variational solution for (1 = 1 gives the lowest order radial

eigenmode S = 0.10, &; = Ae== /176" /\/G 1 22
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Second harmonic shear Alfvén sideband

Denote T(z) = m®, /(r«\/Byp). The equation for second harmonic

sideband reduces to

d dd ~ .
(S + x2)d—; —16(S + 22) Py + 4Q2Py =

— 42 (') = T2) + (S +22) (T'T" = TT") + (%), (2)
where S is the AC eigenvalue and () accounts for the hot ion and
toriodicity effects.

In the special case Qnot > Qior, @ is independent of m and n and
1= Q2 = Q.
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Numerical solution for shear Alfvén sideband

Q=0.645, S=0.011 Q=1,5=0.10

-1.5 —i —OI.5 O OI.5 1 15 -1.5 —i —OI.5 O OI.5 1 15
X X
e The amplitude of &5 decreases with increasing (). For () ~ 0.65

we find
2

B ~ T? ~ _
? TEBO

B 3 ~
= po, = povq>2.(v % B_g> ~ VPO &2
0

o For large values of (), pg2 can compete with pg,.
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Summary

e The ratio of density perturbations at the second and first

harmonics can be estimated as

pa Mo ma B
p1 12By e By

e Second harmonic shear Alfvén sideband dominates over

compressional Alfvén and acoustic perturbations.

e Comparison of the first harmonic and second harmonic PCI
signals can provide important information about internal
perturbations at the mode location, assuming that

instrumental nonlinearities are insignificant.
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