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Alfvén Cascades (reminder)

• Alfvén Cascades (ACs) are shear Alfvén eigenmodes localized

at the minimum q surface (r = r∗) in plasmas with magnetic

shear reversal.

• The eigenmode frequency ω = ωAm,n + ∆ω is slightly higher

than the local shear Alfvén wave frequency :

ω2
Am,n = k2

‖∗v
2
A = (m − nq∗)

2v2
A/(Rq∗)

2.

• During current ramp-up q∗ decreases with time which leads to

the characteristic sweeping of the AC frequency.

• The frequency sweeps up to ωTAE = vA/(2Rq∗), where

transition to TAE mode occurs.
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Experimental motivation (I)
• Measurements with Phase Contrast

Imaging (PCI) on Alcator C-mod show

a second harmonic density perturbation.

The second harmonic signal is faint at

the edge magnetic probes, suggesting a

narrow radial profile of the perturbation.

[J. A. Snipes et al. 31st EPS Conference, London, 2004]
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Experimental motivation (II)

• Our goal is to calculate the second harmonic density

perturbation driven by quadratic terms in the MHD equations.

• The analysis can potentially be used to estimate the AC

amplitude at the mode center.

• Instrumental non-linearities may be a factor in interpretation

of PCI measurements. This issue needs to be addressed

separately.
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Preliminary remarks

• The shear Alfvén wave has a relatively weak nonlinearity. The

quadratic nonlinearities vanish in a uniform plasma with

straight magnetic field lines.

⇒ Consider coupling to compressional Alfvén and acoustic

perturbations.

• The double AC eigenmode frequency

2ω = 2(ωAm,n + ∆ω) = ωA2m,2n + 2∆ω

is near the double mode number branch of the Alfvén

continuum. This can lead to resonant enhancement of the 2ω

perturbation.
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Mode representation
Magnetic field representation: B = B0 + (B1 + B2 + c.c.), where

B1 ∝ e−iωt, B2 ∝ e−2iωt etc.

Use the plasma velocity representation

v1 =
b0

B0

×∇Φ̇1 +
1

B0

∇⊥Ψ̇1,

v2 =
b0

B0

×∇Φ̇2 +
1

B0

∇⊥Ψ̇2 + ξ̇2b0,

where the shear (Φ), compressional (Ψ) and acoustic (ξ) functions

represent the three degrees of freedom of the plasma.

The first harmonic acoustic perturbation ξ1 is negligible for the

main part of the AC. We exclude it by assuming β = 0.
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Derivation path

• The known linear AC eigenfunction (Φ1 and Ψ1) produces a

quadratic nonlinear force in the momentum balance equation.

• We calculate the driven compressional (Ψ2), acoustic (ξ2) and

shear Alfvén (Φ2) perturbations to Φ1 from the momentum

balance equation.

• We use Φ1, Φ2, Ψ1, Ψ2, and ξ2 in the second harmonic

continuity equation

∂ρ2

∂t
+ ∇ · (ρ1v1) + ∇ · (ρ0v2) = 0,

to determine the 2ω density perturbation

ρ2 = ρΦ2
1

+ ρΨ2
1
+ ρΦ1Ψ1 + ρΦ2 + ρΨ2 + ρξ2 .
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Momentum balance equation (I)

Consider the three “projections” of the momentum balance

equation:

• Acoustic equation: b0 · {Momentum balance eq.}

• Compressional equation: ∇ ·
[

1
B0

{Momentum balance eq.}⊥
]

• Vorticity equation: ∇ ·
[

B0

B2
0
× {Momentum balance eq.}

]

The acoustic and compressional equations give

ρΨ2
1
, ρΦ1Ψ1 , ρξ2 , ρΨ2 � ρΦ2

1
, ρΦ2 . ⇒

The dominant contribution to ρ2 arises from shear Alfvén perturbations.

• The ρ1v1 term in the continuity equation generates

ρΦ2
1
' ρ0

[

b0

B0

×∇Φ1

]

·∇
[

∇Φ1 ·
(

∇× b0

B0

)]

∼ m2ρ0Φ
2
1/(r

3RB2)

• ρΦ2 is determined by quadratic terms in the vorticity equation.
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Momentum balance equation (II)

The second harmonic vorticity equation has the form

B̄0r

m

[

4
1

r

d

dr

(

r
dΦ̃2

dr

(

ω2

v̄2
A

− k̄‖
2

)

)

− 16
m2

r2
Φ̃2

(

ω2

v̄2
A

− k̄‖
2

)

]

=

2
dD

dr





(

dΦ̃1

dr

)2

− m2

r2
Φ̃2

1



+D

(

dΦ̃1

dr

d2Φ̃1

dr2
− Φ̃1

d3Φ̃1

dr3

)

−k̄‖

d2k̄‖

dr2

dΦ̃2
1

dr

where D = ω2/v̄2
A − k̄2

‖,

Φ1 = Φ̃1(r) exp [i(nφ − mθ − ωt)],

Φ2 = Φ̃2(r) exp
[

2i(nφ − mθ − ωt) − iπ
2

]

.

The derivation involves flux surface averaging (denoted by bar).
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Recall AC eigenmode theory

Eigenmode equation with normalized coordinate x ≡ (r − r∗)m/r∗:

d

dx
(S + x2)

dΦ̃1

dx
− (S + x2)Φ̃1 + Q1Φ̃1 = 0. (1)

Effects of hot ions and toroidicity are included in Q1 = Qhot + Qtor:

Q1 ≡ ω2
Aq2

∗R̄
2

v̄2
A(m − nq∗)

q∗
r2
∗q

′′
∗

(

ωc,hot

ωA

(

− r

ρ0

dρ̄hot

dr

)

r=r∗

+
2mε∗(ε∗ + 2∆′

∗)

1 − 4(m − nq∗)2

)

.

Solutions to (1) exist if Q1 > 1/4. The distance ∆ω to the Alfvén

continuum is determined by the eigenvalue S:

S ≡ 2ωA∆ω

v̄2
A

mq∗
r2
∗q

′′
∗

R̄2q2
∗

m − nq∗
.

Variational solution for Q1 = 1 gives the lowest order radial

eigenmode S = 0.10, Φ̃1 = Ae−x2/1.762

/
√

S + x2
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Second harmonic shear Alfvén sideband

Denote T (x) ≡ mΦ̃1/(r∗
√

B̄0). The equation for second harmonic

sideband reduces to

4
d

dx
(S + x2)

dΦ̃2

dx
− 16(S + x2)Φ̃2 + 4Q2Φ̃2 =

= 4x((T ′)2 − T 2) + (S + x2) (T ′T ′′ − TT ′′′) + (T 2)′, (2)

where S is the AC eigenvalue and Q2 accounts for the hot ion and

toriodicity effects.

In the special case Qhot � Qtor, Q is independent of m and n and

Q1 = Q2 = Q.
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Numerical solution for shear Alfvén sideband
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• The amplitude of Φ2 decreases with increasing Q. For Q ' 0.65

we find

Φ2 ∼ T 2 ∼ m2

r2
∗B̄0

⇒ ρΦ2 = ρ0∇Φ2·
(

∇× B0

B2
0

)

∼ m3ρ0

r3
∗RB̄0

2
Φ̃2

1.

• For large values of Q, ρΦ2
1

can compete with ρΦ2 .
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Summary
• The ratio of density perturbations at the second and first

harmonics can be estimated as

ρ2

ρ1

∼ m2Φ1

r2B0

∼ mq

ε

|B1|
B0

.

• Second harmonic shear Alfvén sideband dominates over

compressional Alfvén and acoustic perturbations.

• Comparison of the first harmonic and second harmonic PCI

signals can provide important information about internal

perturbations at the mode location, assuming that

instrumental nonlinearities are insignificant.
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