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Abstract. Two types of hybrid simulations of MHD fluid and energetic particles were carried out to investigate 

MHD nonlinear effects on Alfvén eigenmode evolution. The first type contains fully nonlinear effects of both 

the MHD fluid and the energetic particles. The second type of the simulation is similar to the first type but 

different in that the MHD equations are linearized. Comparison between the results of the two types of 

simulations clarifies the MHD nonlinear effects. A tokamak plasma, where a toroidal Alfvén eigenmode (TAE) 

with toroidal mode number n=4 is the most unstable, was investigated. When the saturation level is 
2102~/ BB  in the linear MHD simulation results, we found that the saturation level is 3108~/ BB in 

the nonlinear MHD simulation results. The MHD nonlinear effects suppress the saturation level of the TAE. 

Detailed analyses indicate that the suppression effect arises from the change in n=0 harmonics of the magnetic 

field that is generated by the nonlinear electric field 
    

vTAE BTAE
, a product of the velocity field and the 

magnetic field of the TAE. Axisymmetric velocity fields are also generated in the nonlinear run, although the 

change in the n=0 magnetic field plays the dominant role in the suppression of TAE.  

 

1. Introduction 

 

For time evolution of Alfvén eigenmodes, an important nonlinearity arises from the dynamics 

of energetic particles that destabilize the Alfvén eigenmodes. It was demonstrated by 

computer simulations that the particle trapping cause the saturation of toroidal Alfvén 

eigenmodes (TAE) [1-4]. This enables reduced simulations of TAE, where spatial profiles and 

damping rates of TAEs are assumed to be independent of mode amplitude. TAE bursts at a 

Tokamak Fusion Test Reactor experiment were reproduced by a reduced simulation [5]. 

Many aspects of the TAE bursts were well reproduced, while only the saturation amplitude 

was     B / B ~ 2 10 2  which is higher than the value     B / B ~10 3  inferred from the 

experimental plasma displacement [5,6]. In another simulation run of TAE bursts, where the 

MHD nonlinear effects are taken account, the saturation level is lower than     B / B ~10 2  [7]. 

These simulation results motivate us to investigate the MHD nonlinear effects.  

 

Two types of hybrid simulations of MHD fluid and energetic particles were carried out to 

investigate MHD nonlinear effects on Alfvén eigenmode evolution using MEGA code [8,9] 

and a linearized version of MEGA code. Fully nonlinear effects of both the MHD fluid and 

the energetic particles are contained in MEGA code. In the linearized version of MEGA code, 

the MHD equations are linearized while the nonlinear particle dynamics are followed. In this 

paper, simulation results of the two types of simulations are presented and compared. It is 

demonstrated that the MHD nonlinear effects suppress the saturation level of the TAE. 

Detailed analyses indicate that the suppression effect arises from the change in n=0 harmonics 

of the magnetic field that is generated by the nonlinear electric field 
    

vTAE BTAE
, a product 

of the velocity field and the magnetic field of the TAE. 

 

2. Simulation Model 

 

The hybrid simulation model for MHD and energetic particles [2,8-10] is employed in MEGA 

code. Plasma is divided into bulk plasma and energetic ions. The bulk plasma is described by 

the nonlinear full MHD equations. The electromagnetic field is given by the MHD description. 
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This approximation is reasonable under the condition that the energetic ion density is much 

less than the bulk plasma density. The MHD equations with energetic ion effects are, 
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where μ0  is the vacuum magnetic permeability,  is the adiabatic constant,  is an artificial 

viscosity coefficient chosen to maintain numerical stability and all the other quantities are 

conventional. Here, '
h

j  is the energetic ion current density without E B  drift. The effect 

of the energetic ions on the MHD fluid is taken into account in the MHD momentum equation 

[Eq. (2)] through the energetic ion current. The MHD equations are solved using a finite 

difference scheme of fourth order accuracy in space and time.  

 

In the linear MHD simulation, the following equations are solved:  
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The drift-kinetic description is employed for the energetic ions. The energetic ion current 

density without E B  drift in Eq. (2) includes the contributions from parallel velocity, 

curvature and gradient drifts, and magnetization current. The E B  drift disappears in      j 
h
 

due to quasi-neutrality [8]. 

 

It is important to start the simulations from MHD equilibria consistent with energetic ion 

distributions. When the energetic ion pressure is isotropic in the velocity space, the energetic 

ion contribution in Eq. (2) is just a scalar pressure gradient in the same form as the bulk 

pressure gradient [8]. Then, the equilibrium can be obtained from the Grad-Shafranov 

equation neglecting the energetic ion orbit width. However, if the energetic ion pressure is 

anisotropic in the velocity space and/or the energetic ion orbit width is not negligibly small, 
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the Grad-Shafranov equation should be extended. We solve an extended Grad-Shafranov 

equation developed in Ref. [11] in the cylindrical coordinates     (R,  ,  z) where R is the 

major radius coordinate,  is the toroidal angle coordinate, and z  is the vertical coordinate.  

Details of the kinetic equilibrium construction is reported in Ref. 9. 

 

3. Simulation Results 

 

A tokamak plasma with aspect ratio of 3.2 was investigated. The spatial profiles of safety 

factor and beam ion beta are shown in Fig.1. The maximum velocity of beam ions is 
    1.2v

A
. 

Here, 
  vA

 denotes Alfvén velocity at the plasma center. The ratio of the beam ion parallel 

Larmor radius to the minor radius is 0.09 for beam ion velocity equal to the Alfvén velocity. 

The magnetic moment is assumed to be zero to for simplicity. The number of grid points are 

101 100 101 for the cylindrical coordinates     (R,  ,  z) . The viscosity and resistivity are 

chosen 
  =10 6

v
A
R0  and 

  =10 6μ0vA
R0, respectively.  

 

For the equilibrium condition mentioned above, we found that the toroidal Alfvén 

eigenmodes (TAE) with toroidal mode numbers n=3-5 are linearly unstable. The spatial 

profile of the most unstable TAE with n=4 is shown in Fig. 2. The frequency of the TAE with 

n=4 is located inside the gap of the Alfvén continuous spectra, as shown in Fig. 3. 
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Fig.1 Spatial profiles of beam ion beta and safety factor. 
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Fig.2 Spatial profile of each poloidal harmonic 

of the toroidal Alfvén eigenmode with toroidal 

mode number n=4. 
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Fig.3 Frequency and location of the toroidal 

Alfvén eigenmode with toroidal mode number 

n=4. Alfvén continuous spectra are represented 

by blue curves. The safety factor profile is 

represented by red curve. 



4 OT09 

-1 10-5

0 100

1 10-5

2 10-5

3 10-5

4 10-5

5 10-5

6 10-5

0 50 100 150 200 250 300 350 400

n=0
n=1
n=2
n=3
n=4
n=5
n=6

A
t

n/
m

ag

 

 

Fig.4 Time evolution of energy for each toroidal 

mode number in the linear MHD run. 
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Fig.5 Time evolution of energy for each toroidal 

mode number in the standard nonlinear MHD 

run. 
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Fig.6 Comparison of energy evolution of 

toroidal mode number n=4 between the 

standard nonlinear MHD run (blue curve), the 

linear MHD run (violet curve), and the 

nonlinear MHD run where only n=0, 4 modes 

are retained (red curve).  
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Fig.7 Comparison of energy evolution of 

toroidal mode number n=4 between the 

standard nonlinear MHD run (blue curve), the 

linear MHD run (violet curve), and the 

nonlinear MHD run where only n=0, 4 modes 

are retained and the n=0 velocity field is 

removed (red curve). Light blue curve represents 

a run where only n=0, 4 modes are retained and 

the n=0 magnetic field is removed.  

 

 

 

A linear MHD simulation and a nonlinear MHD simulation were carried out. The evolution of 

energy for each toroidal mode number is shown in Fig. 4 for the linear run and in Fig. 5 for 

the nonlinear run. The n=4 TAE is the most unstable and is saturated at 
  A

t = 300 in Fig. 4 

and at 
  A

t = 260  in Fig. 5. Comparing Figs. 4 and 5, the saturation level of the n=4 mode 

energy in the nonlinear MHD run is 15% of that in the linear MHD run. The saturation 

amplitude of the n=4 TAE is     B / B ~ 2 10 2 in the linear MHD run, and     B / B ~ 8 10 3 in 

the nonlinear MHD run. MHD nonlinear effects suppress the TAE saturation level. We see in 

Fig. 5 that the n=0 mode energy continuously grows until the end of the simulation after the 

saturation of the n=4 mode energy. This suggests that the beam ions continue to drive TAEs 

while some nonlinear mechanism stabilizes them converting the TAE energy into the n=0 

mode energy.  
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We carried out another nonlinear MHD run where toroidal mode numbers only n=0 and 4 are 

retained. The time evolution of energy for toroidal mode number n=4 is shown in Fig. 6 with 

those of the standard nonlinear run shown in Fig. 5 and the linear run shown in Fig. 4. The 

saturation level in the run with the selected modes is similar to the standard nonlinear run. 

This indicates that the TAE saturation level is suppressed by the n=0 harmonics rather than 

the harmonics with higher toroidal mode numbers. We carried out other two runs where only 

n=0 and 4 harmonics are retained and the n=0 velocity field or the n=0 magnetic field is 

removed. The results are compared in Fig. 7. We see that the saturation level is the lowest 

when the n=0 velocity field is removed. These results indicate that the suppression effect 

arises from the change in n=0 harmonics of the magnetic field (
    

B
n= 0). Since there is no n=0 

velocity field in this run, 
    

B
n= 0  is generated by a nonlinear electric field 

    En= 0 = v
n= 4 B

n= 4 , which is the nonlinear electric field of the TAE. The lowest saturation 

level without the n=0 velocity field implies that the n=0 velocity field relaxes 
    

B
n= 0  and its 

suppression effect.  

 

It is not clear why 
    

B
n= 0  suppresses the TAE saturation level. We show in Fig. 8 the Alfvén 

continuous spectra and the safety factor profile at 
  A

t = 280  in the standard nonlinear MHD 

run. In Fig. 5 the growth of the n=4 mode energy is saturated just before this time. We see that 

the safety factor profile is steepened near the n=4 TAE spatial peak at     r /a ~ 0.4 . The n=0 

poloidal velocity field at the same time in the standard nonlinear MHD run is shown in Fig. 9. 

The poloidal harmonics m=0 and 1 are dominant in the n=0 poloidal velocity field. The 

poloidal velocity field sharply peaks near the n=4 TAE spatial peak. 
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Fig.8 Alfvén continuous spectra with the toroidal mode number n=4 and 

the safety factor profile at 
  At = 280 in the standard nonlinear run. 
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Fig.9 Poloidal velocity field with the toroidal mode number n=0 at 

  At = 280 in the standard nonlinear run. 
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Fig.10 Initial and final beam ion beta profile in 

the linear MHD run. 
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Fig.11 Initial and final beam ion beta profile in 

the standard nonlinear MHD run. 

 

Initial and final beam ion beta profiles are compared in Fig. 10 for the linear MHD run and in 

Fig. 11 for the standard nonlinear MHD run. We see that the beam ion transport is also 

suppressed by the MHD nonlinear effects.  

 

4. Discussion and Summary 

 

Saturation of TAE instability due to MHD nonlinear effects was theoretically investigated in 

Ref. 12. Comparison between the present simulation results and the theory in Ref. 12 is 

needed. The change in safety factor profile and the generation of   E B  flow were found in a 

computer simulation where energetic particles are approximated by the Landau Fluid model 

[13]. In Ref. 13, it is reported that the   E B  flow has the dominant effects on the saturation 

of the TAE instability. On the other hand, in the present simulation results, it was found that 

the change in the n=0 magnetic field suppresses the saturation level of the TAE.  

 

In this paper, the two types of simulation results were presented and compared. In the first 

type of the simulation the fully nonlinear MHD equations are solved, while linearized MHD 

equations are employed in the second type. A tokamak plasma, where a toroidal Alfvén 

eigenmode (TAE) with toroidal mode number n=4 is the most unstable, was investigated. 

Comparison between the results of the two types of simulations clarified the MHD nonlinear 

effects. We found that the saturation level is     B / B ~ 8 10 3in the nonlinear MHD simulation 

results when the saturation level is     B / B ~ 2 10 2 in the linear MHD simulation results. 

The MHD nonlinear effects suppress the saturation level of the TAE. Detailed analyses 

indicate that the suppression effect arises from the change in n=0 harmonics of the magnetic 

field that is generated by the nonlinear electric field 
    vTAE

B
TAE

, a product of the velocity 

field and the magnetic field of the TAE. Axisymmetric velocity fields are also generated in 

the nonlinear run, although the change in the n=0 magnetic field plays the dominant role in 

the suppression of TAE.  

 

We have demonstrated that the MHD nonlinear effects suppress the TAE saturation level. It 

was also demonstrated by a computer simulation that the synchronized bursts of multiple 

TAEs take place with the MHD nonlinearity [7]. Thus, we can expect a simulation which 

reproduces the TAE bursts with saturation amplitude closer to that inferred from the 

experimental plasma displacement. On the other hand, as has been shown in this paper, 

energetic ion transport is also suppressed by the MHD nonlinearity. These results indicate that 

we need to focus on the feedback of the MHD fluid for the saturation level as well as beam 

ion transport in phase space when we try to simulate the TAE bursts.  
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