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A new kind of fishbone instability associated with circulating energetic ions is predicted. The considered 
instability is essentially the energetic particle mode and arises in plasmas with on-axis safety factor q0 close to 
unity and extended shear-free central core, separated from the wall by a region with finite shear. The frequency 
of this “quasi-interchange” fishbone mode is ω ~ k0||vα with k0||  the parallel wave number in the shear-free core 
and vα the injection velocity of energetic ions. “Infernal” fishbone modes with the same properties, but m/n > 1 
with m(n) the poloidal (toroidal) mode number, are investigated. A possibility to explain recent experimental 
observations of the m=2 fishbone oscillations accompanied by strong changes of the neutron emission during 
tangential neutral beam injection in the National Spherical Torus Experiment is shown.   
 
1. Introduction 
 
Some tokamak discharges are characterized by safety factor q close to unity in a wide region 
in the plasma core, which is separated from the wall by the edge region with large magnetic 
shear. This is the case for the “hybrid” regime, which is considered as a third operational 
scenario for ITER [1]. Furthermore, q-profiles with extended flat region and q0 close to low-
order rational are typical for high beta discharges in spherical tokamaks [2]. Since all 
mentioned discharges are accompanied by strong neutral beam injection (NBI), the problem 
of kinetic stability of such low-shear configurations in the presence of energetic ions 
represents considerable interest, which motivated present work. 
 
In the framework of ideal MHD stability theory equilibrium with this type of q-profile is 
susceptible to a pressure-driven “infernal” modes [3,4]. A particular case of these instabilities 
is the quasi-interchange (QI) mode with poloidal and toroidal mode numbers m=n=1 [5-7]. 
The eigenfunction of this instability is of convective, or “cellular” character, in contrast with 
rigid kink displacement in the finite shear case. In the present work we show that this property, 
combined with finite orbit width of energetic ions, leads to the new kind of the fishbone mode 
with characteristic frequency of the Cherenkov resonance in the shear-free core, αω vk ||0~  
with k0||=(m-nq0)/q0R and αv  injection velocity. 
 
The purpose of the present work is to extend the ideal MHD theory of the QI mode in toroidal 
plasmas, developed in [6,7], to equilibrium with minor population of energetic ions. In the 
next section dispersion relation for the QI fishbone is derived and analyzed. The case of 
arbitrary (m, n) is considered in Sec.3. Section 4 is a short summary. 
 
2. Dispersion Relation for the QI Fishbone Mode 
 
The eigenmode equations for the QI fishbone can be obtained from the minimization of the 
total energy of the perturbation 
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where δWMHD is the ideal MHD potential energy [6,7], ωA=VA/R0 with VA( r ) ≈ const the 
Alfven speed and R0 the major radius of the torus, 
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with ⊥ξ  the transverse displacement, and δWk is the kinetic part of the potential energy, 
which encapsulates information regarding resonant energy exchange between energetic ions 
and fishbone mode [8] 
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where bbppIp kkkk )(ˆ
|| αααα δδδδ ⊥⊥ −+=Π  is the pressure tensor with kp αδ ⊥||,   the parallel 

and perpendicular pressure perturbations associated with non-adiabatic response of the 
energetic ions, Ε=Λ= /,||/ 0|||| Bvv gµσ  with )( gµΕ the particle energy (magnetic 

moment), bτ  is the particle transit time, 1)/)(/( −
∗ Ε∂∂Ρ∂∂= αϕααω FF , κ  is magnetic field 

curvature, and ...  denotes orbit averaging. 
 
Below we assume that the energetic-ion population consists of well-circulating particles with 
the equilibrium distribution function given by  
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where )(rpα is the beam particle pressure and H(x) is the unit step function. Furthermore, it is 
assumed that energetic ions are deposited in the shear-free core, that is 0)( 0 ≈> rrpα , where 
r0 is the radius at the interface between shear-free and finite shear regions. 
 
Omitting term odd in θ in κξ •⊥ , which does not contribute to δWk, we obtain 
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where ξ1 is the amplitude of the m=1 radial displacement, 
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We now assume r<<∆α  and Taylor expand ξ1[r(θ)] in Eq.(4). Substituting result to 
expression for δWk together with Eq.(3), taking orbit average and velocity space integration, 
one can obtain 
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where ααα ωρ cv /= , 
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and ω<<ω*α has been assumed. Note that it is the quasi-interchange character of the mode  
(dξ1/dr≠ 0 in the shear-free core), which allows for efficient power transfer at the Cherenkov 
resonance in this case. This is in contrast with rigid internal kink, when only particles crossing 
q=1 surface in the course of their drift motion contribute to the non-adiabatic response [9]. 
 
For simplicity below we take radial fast ion distribution in the form ])/(1[ 4

00 rr−= αα ββ . 
Rescaling the variable r/a→r with a the plasma radius, one can obtain from minimization of 
energy in Eq.(1) the following Euler equations in the shear-free core: 

,)ˆ(
4

4
4),()1(

2
3

1
3

2
13

2

2
22

ξββ

ξββ
ξ

ω
ωωµε α

r
dr
dr

rr
dr
drrl

dr
d

pp

pp
A

⎟
⎠
⎞

⎜
⎝
⎛ +′

=⎟
⎠
⎞

⎜
⎝
⎛ +′′−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−+−−

                                     (7) 

,
4

4ˆ3
ˆ

1
3

2
23

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +′−=−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ξββξ

ξ
pp

r
dr
drr

dr
dr

dr
d                                                               (8) 

where µ=1/q with |µ-1| ~ ε in the shear-free core, 22 ξ̂εξ ≡  with ξ2 the amplitude of the m=2 

radial displacement and ε ≡ a/R0 , ∫−=
r

cp rdrddprBrRr
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background plasma pressure, and 
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The general solution of Eq.(8), which is regular on axis, has the form 
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where e is an integration constant. Substituting Eq.(10) into Eq.(7) and integrating, one can 
obtain 
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Dispersion relation can be obtained by matching the solution in the inner (shear-free) to the 
solution in the outer (sheared) region. In the latter region toroidal coupling in equation for ξ2  
can be neglected, since |µ-1| ~ 1 and therefore ξ1 ~ ε2 [see Eq.(11)]. Equation for ξ2 in the 
sheared region then takes the form 
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which has the asymptotic solution in the shear-free region 
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where µ(r2)=1/2 and constant σ should be determined numerically by integrating Eq.(12) 
through the outer region. Matching Eq.(13) with asymptotic form of Eq.(10) in the outer 
region, we obtain dispersion relation 

,
/),()1(

)]([

0 2

5

2
222

22
2 ∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−+−
⎟
⎠
⎞

⎜
⎝
⎛=

a

A

p

r
dr

r
r

rl

r
a
r

ωωωµ

βε
σ

α

                                                           (14) 

where dimensions have been restored. Note that the integrand in Eq.(14) has the pole at the 
Alfven resonance in the outer region. The residue at this pole represents continuum damping 
of the fishbone mode. Away from the resonance the integrand becomes negligible in the 
sheared region. Thus, we can rewrite Eq.(14) in the form 
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and AAr ωωµ /|1)(| =− . Equations (15,16) can be used to determine critical fast ion pressure 
and mode frequency at the onset of the fishbone mode for any particular profiles of the 
rotational transform and background plasma pressure.   
 
3. Infernal Fishbone Modes with Arbitrary Mode Numbers 
 
In the present section we generalize results of the previous section to arbitrary mode numbers. 
In the shear-free core with ε~0nqm −  the mode equations for general m, n are 
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where again 11
ˆ

++ ≡ mm ξεξ . The general solution of Eq.(18), which is regular on magnetic axis, 
takes the form 
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Substituting Eq.(19) into Eq.(17), one can obtain 
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With pressure profile given by ])/(1[ 2

0
νarppc −=  we have 22ˆ −= νββ rpp . Thus one can 

see that, for ε|~| 0nqm −  , the ratio of the last term on the left-hand side of Eq.(20), which 
represents stabilizing effect of the average magnetic well, to the second term on the LHS of 
this equation is of the order of  1)/( 2

0 <<νar , where r0 is again the radius at the transition 
between shear-free and sheared regions, which is assumed to be sufficiently abrupt to allow 
for asymptotic matching of the in these regions. Neglecting the last term on the LHS, Eq.(20) 
can be easily integrated. Imposing boundary condition 0)1( =mξ , one finds 
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Note that ξm is again negligible in the sheared region, except in the vicinity of the Alfven 
resonance. The dispersion relation again can be obtained by matching the asymptotic form of 
the solution Eq.(19) with ξm given by Eq.(21) in the sheared region, to the shear-free limit of 
the outer Eq.(18) (with the right-hand side neglected): 
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where µ(rm+1)=n/(m+1). We find  
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where we have restored radius dimension. For the µ-profile given by 
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and expression for σres takes the form 
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To make contact with NSTX experiment [10], we take vα /VA=2, m=2, n=1, q0=1.7, R0/a=1.5, 
and choose ν=6, λ=4, so that σ2=1/8, σ12(ω)=const, r3 /a ≈ 0.8, r0 /a ≈ r2/a ≈ 0.6. Considering 
plasma at the margin of the MHD stability in the absence of fast ions [taking lα = ω = 0 in  
Eq.(23)], and taking into account that )]1/([)/)(/(ˆ 22 += ννεββ nmop , we obtain 
β0

marg=0.35, and Eq.(25) yields σres ≈ 0.55. Equation (23) then yields at the margin of the 
fishbone stability ( Imω=0 ) 

,
)(Im)/()(Re

)12(4
195
192ˆ

212

2
0

2

Ω+Ω
−Ω

=
FF

crit

σσ
µ

βα                                                                        (26) 

,)(Re4)(Im
2

21

12

2

2

122 Ω=⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ΩΩ FF

σ
σ

σ
σ

σ
σ                                                                  (27) 

where 0
4

00
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ααα βρπβ rR≡ . Solution of Eqs.(26),(27) yields 
2105.2ˆ,6.0 −×≈≈Ω crit

αβ . Taking into account that in NSTX r0 ≈ 0.6a ≈40cm, R0 ≈100 cm, 
ρα ≈ 20 cm, we obtain βα0

crit ≈ 0.1. For the chosen fast ion pressure profile this corresponds to 
the volume averaged fast ion beta 2

0
2

0 104.2)/)(3/2( −×≈= αα ββ ar . Taking into account 

that energetic ions are deutrons with injection energy 80 keV, we obtain                       
f = 0.6(2µ0 -1)vα /2πR0 ≈ 46kHz. Both these values are in reasonable agreement with observed 
initial fishbone frequency in the plasma frame f ≈ 45 kHz and volume averaged beam ion beta 

%2≈αβ . 
4. Summary 
 
We have shown that in low-shear tokamaks fishbone modes with arbitrary mode numbers can 
be destabilized by the interaction with energetic circulating ions at the Cherenkov resonance. 
In contrast to the conventional m=n=1 circulating-ion-driven fishbone instability, the 
considered instability is caused mainly by particles with orbits inside the flux surface with the 
radius r0 separating regions with low and finite magnetic shear. The efficient energy exchange 
between these particles and the perturbation takes place due to finite orbit width of the 
energetic ions and a radial gradient of the mode poloidal electric field. Both the mode 
frequency and critical fast ion pressure are in reasonable agreement with experimental 
observations of bursting m=2 fishbone oscillations accompanied by strong changes of the 
neutron yield in the NSTX spherical torus. 
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