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Abstract

The influence of fast particles on TAE modes in stellarators is investigated in
the framework of a kinetic MHD approach. The theoretical model couples ideal
MHD with a drift kinetic equation allowing the perturbative calculation of growth
and damping rates due the several particle species. Here, the code considers
passing particles only. Comparison is made between the numerical results and a
local theory where the latter turned out to be a useful first guess approximation.
While the fast particle drive is, as in tokamaks, mainly due to the coupling with
the toroidal components of the modulus of the magnetic field, the ion contributions
to the damping stem from the coupling with the helical components.

1. Introduction

Meanwhile, several experimental investigations of fast particle effects in stellarators as
eg., in W7-AS [1, 2], have been made. Recently, the parameter space for the exitation
of toroidal Alfvén eigen modes (TAE’s) and energetic particle modes (EPM’s) has been
explored at LHD [3]. Regarding this progress in the quantitative assessment, it is
desirable to develop according theoretical tools.
We will show that the theory can predict stability limits for Alfvén eigenmodes in three-
dimensional equilibria from both the analytical and the numerical point of view.
A drift-kinetic extension [5] of the ideal magneto-hydrodynamic (MHD) stability code
CAS3D [7] is applied to shot No. 39042 of W7-AS [1] and a W7-X equilibrium. The
equilibrium for W7-X is a high-β (β = 4.2%) practically island free equilibrium which
has been obtained from a PIES calculation [4].

2. Theory

We start from a three- dimensional MHD description of plasma stability and use the
CAS3D stability code [7]. It has been shown that a kinetic energy principle can be
derived which couples the drift kinetic particle species (electron, ions, and a fast ion
component) to the MHD stability equations via an expression for the pressure in the
force balance equation [5].
To avoid following 3D particle orbits explicitly, a technique invented by Rewoldt et al. [9]
which is being used in numerous 2D codes [10, 11] has been adopted. The particles move
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along field lines feeling a bounce or transit averaged drift only. The radial extension of
the particle orbits is not taken into consideration.
The particle-wave energy exchange by resonant interaction is given by
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The perturbed particle Lagrangian is given by

L(1) = −(Mv2
‖ − µB)~ξ⊥ · ~κ+ µB~∇ · ~ξ⊥ .

Here, 〈. . .〉 denotes the transit or bounce average (t′′ = t′′(ϑ′′))
The complete energy integral can be written as

ω2δWkin = δWmag +
∑

s=i,e,hot

δWs(ω) (4)

and constitutes a nonlinear eigenvalue problem for the mode frequency ω. In this paper,
we will restrict to passing particles and a perturbative approach, i.e. we assume that
δWs � δWmag, where δWkin and δWmag are the constituents of the ideal MHD energy
principle with vanishing pressure contribution (γa ≈ 0).
In this linear model, each species contributes separately to the growth or damping rate
of the mode which can be calculated perturbatively according to:

∆ωs + iγs ≈
1

2

δWs(ω0)

δWmag
ω0 (5)

using the MHD eigenfunctions and the MHD frequency ω0 of the CAS3D result on the
right hand side.
Obviously, the mode is unstable if the growth rate γ is larger than zero:

γ = γhot + γi + γe > 0 . (6)

This condition allows the derivation of stability boundaries (i.e. a critical βfast) with
respect to different parameters.
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3. Local limit and resonance condition for fast particles

In the limit of localized modes, i.e. very large aspect ratio the expression for the passing
particle fraction in Eq. (5) corresponds to the local theory developed in [8]. Additionally,
we allow for a temperature gradient of thermal electrons and ions and arbitrary couplings
between the mode and the Fourier components of the equilibrium magnetic field but
neglect the suggested reflected particle correction. Furthermore we correct a numerical
error in the application of the local theory in an earlier publication [6].
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Figure 1: Fourier components of the modulus of the magnetic field for W7-AS(#39042)
(left) and W7-X (right)

In the large aspect ratio limit the resonance condition is

vres
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where Np is the number of periods, ι∗ labels the local value of the rotational transform
where the Alfvén branches cross, m, n are the mode numbers of the Alfvén wave and
m′, n′ label the component Bm′n′ to which the mode couples. For the local calculations,
we consider the two main components of Bmn (see Fig. 1) only.

4. Results

We chose a W7-AS shot (No. 39042) which has already been discussed in the literature
[1, 6]. Although, in this case, the fast ion drive is relatively small, the mode numbers and
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Figure 2: mode structures of the W7-AS case (left) and the W7-X case (right)
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the mode structure were identified experimentally to be a toroidal Alfvén eigen mode
(TAE) with its main Fourier components being m = 5, n = −2 and m = 6, n = −2.
The calculations have been performed resembling the experimental conditions as close
as possible taking a slowing down distribution for the fast ions from the neutral beam
injection. Additionally, the energy of the bulk and beam ions will be varied to distinguish
different contributions to the growth rate and to calculate stability diagrams.
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The growth or damping rates for bulk and fast ions, both being deuterons, are shown
in Fig. 3. In general the agreement between both approaches is remarkably good
considering the simplicity of the local approach.
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We see that the main contributions to both, ion damping and fast ion growth rate,
are connected with the resonance velocities due the coupling of the mode with the
equilibrium magnetic field. For the hot particles, the growth rate increases rapidly
when the maximum beam velocity exeeds the resonance velocity of 1/3vA. The electron
damping is weak (γe = −3.82·10−4) because the electron thermal velocity at the location
of the mode (≈ 1.933 vA(s0)) is beyond the important resonances.
To understand how the resonance condition looks like in the complex numerical model
we look at the variation of the field line averaged transit frequency (Fig. 4): The
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variation of this quantity with the field line label is so small that it is not resolved in
the figure. It does mainly depend on the trapping parameter. In this sense, the picture
shows a tokamak-like behaviour. On the other hand, we see that those particles which
have a large v|| (small Λ) can resonate with the side bands and contribute to the growth
rate. This fits to the assumptions of the local theory and may partly explain its relative
success. Another reason is presumably the relatively low shear of both equilibria. From
eq. (7) we see that the smaller the change in ι the smaller is the radial variation of
the resonance condition. The comparison of the stability diagrams (see Fig.5) with the
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Figure 5: The critical βfast/β vs. the ratio of maximum beam velocity to Alfvén velocity
which constitutes a stability limit. The local approach following [8] is compared with
the results from CAS3D-K.

beam velocity shows differences for small beam velocities. The global code predicts a
weak instability of 1.1βfast crit, being in good agreement with the local result. The same
is true for the approximate threshold value in vbeam max/vA ≈ 0.1
For the W7-X mode, the agreement between local and global results is still better than
a factor of two. Nevertheless, the numerical model again predicts the mode to be less
stable. However, for the high βi case considered here, the low energy part of the fast
particle distribution function is expected to deviate from the simple slowing down model
for envisaged neutral beam injection scenarios [12]. Therefore, to predict NBI stability,
a refined model of the distribution function will be included in CAS3D-K.
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5. Contribution of thermal ions

In this type of theory (kinetic MHD), it is possible that modes are destabilized by the
temperature gradients of the thermal ions. This is illustrated in Fig. 7.
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Figure 7: local approach to ion damping rate with (left) and without (right) temperature
gradient considered for several TAE modes for the W7-AS case

It is an interesting question in how far this MHD model of kinetic growth and damping
rates reflects the real behavior of the plasma. However, a decisive answer is not yet
known, not even for tokamaks but can be expected from gyrokinetic codes as e.g. [11,
13, 15] see also [14]. In this paper we only took a closer look on modes which are stable
also with an ion temperature gradient The extension of the model to include non-ideal
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(i.e. finite gyro radius and finite E‖| effects) at least on the fluid side (for the equations
see e.g. [16]) is underway and will allow access to cases where the gaps are closed.

6. Conclusion
The drift kinetic MHD growth and damping rates of a fast particle driven TAE mode
have been calculated for realistic 3D conditions (W7-AS shot No. 39042).
Varying parameters as ion temperature and maximum beam velocity, stability diagrams
have been calculated. The results indicate that this particular shot is close to marginal-
ity. These theoretical stability diagrams open up a possibility for more comparisons
with the experimental exploration of the parameter space.
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The results for the chosen W7-X equilibrium show that the local theory is a reasonable
approximation but may deviate quantitatively, especially for small injection energies.
The good agreement may be due to the small shear of the considered equilibria.
It is shown that resonances stemming from the coupling to the helical side bands con-
tribute mainly to the ion damping for both equilibria. This constitutes a genuine effect
of three dimensional equilibria.
The fast particle drive, on the other hand, comes mainly from the well known toroidal
side band resonances at 1/3vA and 1/1vA. The electron contribution to the damping is
small because the electron velocity is larger than the Alfvén velocity.
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