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1 Abstract

The ability to predict the stability of fast-particle-driven Alfvén eigenmodes in burning
fusion plasmas requires a detailed understanding of the dissipative mechanisms that damp
these modes. In order to address this question, the linear gyro-kinetic, electromagnetic
code Ligka [1] is employed to investigate their behaviour in realistic tokamak geometry.
Ligka is based on an eigenvalue formulation and self-consistently calculates the coupling
of large-scale MHD modes to gyro-radius scale length kinetic Alfvén waves. It uses the
drift-kinetic HAGIS code [2],[3] to accurately describe the unperturbed particle orbits in
general geometry. In addition, a newly developed antenna-like version of Ligka allows for
a frequency scan, analogous to an external antenna.
With these tools the properties of the kinetically modified TAE in or near the gap (KTAE,
radiative damping or ‘tunnelling’ ) and its coupling to the continuum close to the edge
are numerically analysed. The results are compared with previous calculations based on
fluid and other gyro-kinetic models. Also first linear calculations on cascade modes are
presented.

2 Introduction

The stability properties of the toroidal Alfvén eigenmode (TAE) [4],[5] in magnetically
confined fusion plasmas are of great interest because TAEs can be driven unstable by
fusion-born α-particles with dangerous consequences for the overall plasma stability and
confinement [6]. In order to make predictions for an ignited plasma like ITER, the back-
ground damping mechanisms of TAEs have to be investigated carefully. These mechanisms
are electron and ion Landau damping, continuum damping, collisional damping and ra-
diative damping. The latter mechanism requires a non-perturbative description, since the
MHD properties of the mode structure are modified by coupling to the kinetic Alfvén wave
(KAW) [7].
In this paper numerical calculations on the kinetic properties, especially damping rates of
TAEs and KTAEs using the gyro-kinetic, linear eigenvalue code Ligka [1] are carried out.
Ligka covers all the damping mechanisms mentioned above, except collisional damping,
which is assumed to be small compared to the other types of damping.
The underlying equations of Ligka can be simplified to the ‘reduced kinetic model’ as used
in [8] and [9] proofing their validity in the regime under investigation.

1



OT03

3 Basics, Equations and Numerical Model

The inclusion of non-ideal effects, namely parallel electric fields and finite ion gyro-radii,
leads to significant changes of the TAE modes and generates a new set of modes, the kinetic
TAEs (KTAEs) and a new type of damping, called radiative damping or ‘tunnelling’ [7, 8].
They are quantified by the non-ideal parameter
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ωc the cyclotron frequency and ε̂3/2 = 5rm/2R.
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It is derived from the vorticity equation with finite Larmor radius (FLR) corrections and
Ohm’s law as given in Ref. [10, 11]. Here, φ is the electrostatic potential, A‖b the magnetic
vector potential, r the radial coordinate and s the coordinate along the field line. δs is the
skin depth δs = c2ε0/ωσ with σ being the parallel complex electrical conductivity, which
was chosen to be σ/ε0 = iω2

pe/(ω + iνeff − k2
‖v

2
the/ω). ωpe and νeff are the electron plasma

frequency and the effective electron collision frequency respectively.
Near the singular layer of the ideal MHD equation (left hand side of Eq. 2), the right hand
side becomes most important and it can be simplified by the substitutions iωA‖/c→ ∂φ/∂s,
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The underlying equations of Ligka (derived in [12, 13]) consist of the quasi-neutrality
equation ∑
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and the gyro-kinetic moment equation:
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Here,
∑
a indicates the sum over different particle species with the perturbed distribution

function fa, mass ma, charge ea, unperturbed density na0, thermal velocity vth,a =
√
Ta/ma

and cyclotron frequency Ωa. In the same simple limit as described above, carrying out the
velocity space integrals and using A‖ = c(∇ψ)‖/iω, these equations can be reduced to:
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leading, by elimination of ψ, to exactly the same fourth order equation as given above in
equations (2) and (3). It should be noted however, that r̂LT is not the same as rLT : the
physics connected with parallel electric fields and collisions (Landau damping, finite banana
orbit effects) would appear on the left hand side of Eq. (7) resp. right hand side of Eq. (8)
originating from the exact kinetic integrals over the velocity space.

The basic version of Ligka [1] solves equations (5), (6) and the linear gyro-kinetic equa-
tion for the perturbed distribution function f up to 2nd order in k⊥%i. Straight field line
coordinates for the background quantities given by the equilibrium code Helena [14] are
chosen. Ligka has been extended to calculate correctly the residual part of the Landau-
type integrals for the case of negative growth rates, i.e. damped modes. It uses a rational
interpolation scheme for the resonance denominator which allows for accurate and fast eval-
uation of the pole contributions without employing derivatives. Grid refinement techniques
are also applied for the velocity space integration. When examining the rich spectrum
around a gap, many closely spaced modes are expected. Using a Nyquist solver is cumber-
some under these conditions because many poles require a high number of sample points
along the integration contour. Thus an antenna-like version of Ligka was developed: A
drive vector is added to the right hand side of the homogeneous equation:

M(ω)

(
φ
ψ

)
= d (9)

where d is only nonzero for the last finite element at the plasma edge, prescribing a small
perturbation from the outside. The eigenfunctions are found by inverting M(ω) resulting
in:

I
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and the plasma response is ‘measured’ by an integral over the eigenfunction:
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4 Benchmarks and Results on TAEs

In this section benchmarks for the three main damping mechanisms are given:
Fig. 1 shows a benchmark with the drift kinetic perturbative Cas3d-k [15] in the Toka-
mak limit. Based on a real JET equilibrium case (#42979, [16]) the isotope mass of the
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Figure 1: Damping rates for a TAE in an open gap dependent on the background isotope
mass

background plasma is varied, resulting in a decreasing damping rate as the isotope mass
increases. Without all the gyro-kinetic contributions, electron Landau damping is the most
important damping mechanism. Agreement within a factor of 2 between the analytical
calculation [17], Cas3d-k and Ligka in the drift kinetic limit is found. However, the dif-
ferences between Cas3d-k and Ligka can be attributed to additional E‖-effects included
in Ligka that cannot be turned off easily.
For the radiative damping, a benchmark with a code based on the reduced kinetic model[9]

was carried out. For a circular equilibrium based on JET shot #38573@5.0s(details in Ref.
[9] ) the temperature and thus also the gyro-radius of the background ions is varied: with
growing gyro-radius the non-ideal parameter λ grows, resulting in an increasing damping
rate. Fig. 2 shows very good agreement between the two codes. The remaining differences
may be attributed to collisional damping effects that are missing in Ligka, but are taken
into account in G. Fu’s code.
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Figure 2: Dependence of the radiative damping on the gyro-radius

Figs. 3 and 4 show how the KAW ’tunnels’ on top of the TAE mode: for a small gyro-radius
no change in the global TAE mode structure can be seen whereas for the case corresponding
to the experimental values (Fig. 3, middle) and a slightly larger gyro-radius (left) changes
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Figure 3: Eigenfunction for kinetic TAE for %i = 1mm (left), %i = 3mm (middle) and
%i = 5.5mm (right)

in the eigenfunction can be seen. This fact confirms that a non-perturbative treatment is
necessary.

The third damping mechanism, the continuum damping can be explored when the TAE
gap is closed at the edge due to a small, near-zero edge density. In this case an additional
KAW is excited at the modes’ intersection with the Alfvén continuum as can be seen on
the right in Fig. 4 at the radial position s = 0.97. The damping rate (Ligka) increases to
from 0.10% to 0.69%. This is relatively close to Fu’s result 0.5%. Thus continuum damping
at the edge is found to be the dominant damping mechanism for TAEs in a closed gap.
The calculated damping rates for an open gap are typically about a factor of 10 too small
compared to experimental measurement [18][19] and other gyro-kinetic calculations [18] by
PENN, [21] where mode conversion in the plasma centre was found to be the dominant
damping mechanism. Ligka finds only negligible mode conversion in the centre. However,
in the closed gap case Ligka’s results become comparable to the experimental value.
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Figure 4: Density profiles for an open and closed gap case (left) and the eigenfunction for
the kinetic TAE for a closed gap with %i = 3mm (right)
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Figure 5: qmin-dependence of the cascade mode frequency (left) and its distance to the
Alfvén continuum (right)
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Figure 6: Dependence of the cascade mode frequency on the pressure gradient (left) and
corresponding eigenfunctions (right)

5 Cascade Modes

In plasmas with a reversed q-profile global shear Alfvén modes can exist because of the
lack of continuum damping near the flat shear region. There have been many experimental
observations [22],[23] and also analytical analysis [24], [25]. In the latter references con-
ditions on the existence of the mode dependent on the q-profile and mode numbers and
the hot particle drive have been derived. For a shifted circle equilibrium part of these re-
sults are reproduced with Ligka: using a parabolic q-profile with q = q0 + 0.5q′′(s− 0.5)2

and ‘sweeping’ qmin from m/n = 2/1 to m − 0.5/n, the mode is shifted away form the
continuum [25] as shown in Fig. 5 It is also of interest how finite- β-effects modify these
criteria. Numerical calculations with Nova-k [26], Castor or also Ligka in similar ge-
ometry based on numerical equilibria found that increasing the pressure gradient helps the
mode to exist. A version of Ligka for analytical equilibria in shifted circle flux geometry
also confirms the numerical calculations (Fig 6). Analytical work is in progress to explain
these results.
Also the non-ideal effects as continuum damping and radiative damping will be investigated.
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