
1 OT01

Nonlinearly Driven Second Harmonics of Alfvén Cascades
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In recent experiments on Alcator C-Mod [1], measurements of density fluctuations with Phase Con-
trast Imaging through the plasma core show a second harmonic of the basic Alfvén Cascade (AC)
signal. The present work describes the perturbation at the second harmonic as a nonlinear sideband
produced by the Alfvén Cascade eigenmode via quadratic terms in the MHD equations.

1. Introduction

Alfvén Cascades have been observed in reversed shear operation of JT-60U [2], JET [3], and
TFTR [4], and they are interpreted theoretically as shear Alfvén eigenmodes localized around
the minimum q surface [5][6], where q = q?. The eigenmode frequency ω is slightly higher
than the local maximum of the Alfvén continuum, ωAm,n = k‖vA = (m − nq?)vA/Rq?. In
recent experiments on Alcator C-Mod, [1], measurements of density fluctuations with Phase
Contrast Imaging through the plasma core show a second harmonic of the fundamental AC
perturbation. The aim of the present work is to evaluate the second harmonic density pertur-
bation produced by a given AC eigenmode via nonlinear terms in the momentum balance and
continuity equations. For the sake of simplicity, the analysis will be limited to the case of a
plasma with low-pressure (β = 0) and large aspect ratio (ε � 1), for eigenmodes with large
poloidal mode number (m � 1).

To be able to interpret the laser interferometric measurements conclusively, one has to
consider the specific laser path and estimate the nonlinearities introduced by the measurement.
These measurement-specific aspects require additional investigation, and will be addressed in
a future publication.

The second harmonic perturbation at 2ω is nearly resonant with the 2m, 2n branch of the
Alfvén continuum ωA2m,2n. The resulting enhancement of the second harmonic is counteracted
by the relatively weak non-linearity of the shear Alfvén wave. For shear Alfvén perturbations
in a uniform equilibrium magnetic field, the quadratic terms [4πρ(v · ∇)v and (B · ∇)B]
tend to cancel in the momentum balance equation . For this reason, extreme care is needed to
properly include magnetic curvature effects and to evaluate the coupling between shear Alfvén
perturbations and compressional perturbations.

2. The Structure of the Problem

The AC mode is dominated by a single poloidal component in the Fourier representation of the
perturbation. This part of the mode structure is known from linear theory (see Refs. [5] and
[6]), and is assumed to be given. The main part of the plasma displacement in an AC mode is
incompressible, which points to the need to keep track of small compressional displacements
in both linear and nonlinear calculations of the perturbed density. Coupling between different
plasma displacement components (or equivalently, plasma velocity components) is determined
by the momentum balance equation. Once all relevant perturbed velocities are derived for both
the first and second harmonics, the density perturbation can be calculated via the continuity
equation.
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Let all quantities X (which can stand for magnetic field B, velocity v, density ρ, etc.) be
represented as

X = X0 +

∞
∑

l=1

Xl + c.c., (1)

where X0 is the equilibrium part, and Xl ∝ exp(−liωt) are the perturbed parts. We assume
that X0 � X1 � Xl for l 6= 1, which prevents any nonlinear feedback from the 2ω perturba-
tion to the fundamental mode at the basic frequency ω.

The plasma velocity has three degrees of freedom, which can be represented by three scalar
functions ξ, Φ, and Ψ through

v ≡ ξ̇b0 +
b0

B0
×∇Φ̇ +

1

B0
∇⊥Ψ̇, (2)

where B0 is the magnitude and b0 the direction of the equilibrium magnetic field, and an
overhead dot denotes a partial time derivative. Through this representation, one can distinguish
between the acoustic (ξ), shear (Φ), and compressional (Ψ) velocity perturbations. Generally,
in a first-order perturbation analysis of a uniform plasma with straight magnetic field lines,
Φ corresponds to the scalar potential and Ψ is related to the perpendicular component of the
vector potential, provided that a suitable gauge is chosen. In a curved magnetic field with
second-order perturbations taken into account, this physical interpretation of the potentials is
no longer valid; nevertheless, it is still possible to use the velocity representation of Eq. (2).

It should be pointed out that plasma pressure effects on Alfvén Cascades are limited to the
lowest frequencies of their sweeping interval [7]. The AC is virtually insensitive to plasma
pressure in the rest of its frequency interval, which allows us to treat that part in the zero-
pressure limit neglecting the plasma pressure in the perturbed momentum balance equation. It
is convenient to apply the time derivative operator to the momentum balance equation, after
which the first and second harmonic components of the momentum balance equations become

4πρ0v̈1 − (∇× B0) ×∇× [v1 × B0] − (∇×∇× [v1 × B0]) × B0 = 0, (3)

4πρ0v̈2 − (∇× B0) ×∇× [v2 × B0] − (∇×∇× [v2 × B0]) × B0 =

= (∇× B0) ×∇× [v1 × B1] + (∇×∇× [v1 × B1]) × B0 +

+
∂

∂t

{

−4πρ0(v1 · ∇)v1 + (B1 · ∇)B1 − 4πρ1v̇1 −
1

2
∇(B1 · B1)

}

, (4)

where Ḃ1 = ∇ × [v1 × B0]. The right-hand side of Eq. (4) contains all quadratic terms in
v1, which represent a driving force determining the second harmonic velocity v2 through the
linear operator on the left-hand side.

The vector equations (3) and (4) can each be split up into three scalar equations by applying
the three operations

b0 · {Eq. 3 or 4} ,

∇ · (b0/B0 × {Eq. 3 or 4}),
∇ · (1/B0 {Eq. 3 or 4}⊥). (5)

which produce the acoustic, vorticity, and compressional equations, respectively. This trans-
forms Eqs. (3) and (4) into six equations, which can be written symbolically as

Eq. (3) ⇔ L1α = 0, (6)

Eq. (4) ⇔ L2α = Sα, (7)
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where the superscript α = a, v, and c indicates the acoustic, vorticity, and compressional
equations, respectively. Equations (6) and (7) can be written as sums over contributions from
the different velocity components,

L1α ≡
∑

i=Φ1,Ψ1,ξ1

L1α
i , L2α ≡

∑

i=Φ2,Ψ2,ξ2

L2α
i , Sα ≡

∑

i,j=Φ1,Ψ1,ξ1

Sα
ij. (8)

For example, Sa
Φ1Ψ1

represents the parallel projection (i.e., acoustic component) of the terms
on the right-hand side of Eq. (4) that are bilinear in Φ1 and Ψ1. We do not distinguish between
different orders of the two indices i and j (e.g. Sa

Φ1Ψ1
= Sa

Ψ1Φ1
). Equations (6) and (7) will be

examined in detail in the following Sections, and the dominating contributions to the second
harmonic density perturbation ρ2 will be identified.

The density perturbation is related to v1 and v2 by the first and second harmonic compo-
nents of the continuity equation

ρ̇1 = −∇ · (ρ0v1), (9)

ρ̇2 = −∇ · (ρ1v1) −∇ · (ρ0v2). (10)

The first term on the right-hand side of Eq. (10) is generated by the nonlinearity of the conti-
nuity equation, while the second term is generated by nonlinearities in the momentum balance
equation (4). The density ρ2 can also be written in terms of the partial contributions from ξ1,
Φ1, Ψ1, ξ2, Φ2, and Ψ2 as

ρ2 = ρΦ2

1

+ ρΨ2

1

+ ρξ2

1

+ ρΦ1Ψ1
+ ρΦ1ξ1 + ρΨ1ξ1 + ρξ2 + ρΦ2

+ ρΨ2
. (11)

The first six of these contributions to the density perturbation come from the first term in
Eq. (10), and the last three contributions come from the second term.

3. First Harmonic Velocity Perturbation

The first harmonic equations are

L1a = L1a
ξ1

= −4πρ0ω
2ξ1 = 0, (12)

L1c = L1c
Ψ1

+ L1c
Φ1

=

= −∇ · 1

B0
(∇∇ · (B0∇Ψ1) + [(∇F1 · ∇)B0 − (B0 · ∇)∇F1] × B0) = 0, (13)

L1v = L1v
Φ1

= ∇ ·
(

ω2

v2
A

∇⊥Φ1

)

+ (B0 · ∇)
1

B2
0

∇ · (B2
0∇⊥F1) −∇2

B0 · ∇F1 = 0, (14)

where F1 ≡ b0/B0 · ∇Φ1. Because of the β = 0 assumption, Eq. (12) immediately yields
ξ1 = 0, which implies that ρξ2

1

= ρΨ1ξ1 = ρΦ1ξ1 = 0. Furthermore, Eq. (13) can be used
together with (B0 · ∇) ∼ k‖ ∼ 1/(Rq), to obtain the estimate

Ψ1 ∼
ε2

m2q2
Φ1, (15)

which yields

ρΦ1Ψ1
∼ m2

r2R2q2

ρ0

B2
0

Φ2
1, ρΨ2

1

∼ 1

R4q4

ρ0

B2
0

Φ2
1. (16)
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Let us now review the eigenmode analysis for Alfvén Cascades to establish the radial
profile Φ̃1 of the shear perturbation Φ1 ≡ Φ̃1(r)e

i(nϕ−mθ−ωt) where dΦ̃1/dr ∼ m/r. The
eigenmode equation for Φ̃1(r) follows from Eq. (14) and takes the form

1

r

d

dr

(

rD
dΦ̃1

dr

)

− m2

r2
Φ̃1D = 0, (17)

where D ≡ ω2/v̄A − k̄2
‖, and a bar denotes a flux surface average.

Equation (17) is oversimplified because it does not include the hot ion contribution and
higher-order toroidal corrections. The reason why these additional terms are essential is that
they shift the eigenmode from the Alfvén continuum. In what follows, we add these terms to
Eq. (17), taking their explicit form from Ref. [6]. We also introduce a normalized coordinate
x ≡ (r − r0)m/r0 and Taylor expand k̄‖ around the zero shear point r = r? where the AC is
located. After these steps, we find the amended Eq. (17) to be

d

dx
(S + x2)

dΦ̃1

dx
− (S + x2)Φ̃1 + Q1Φ̃1 = 0, (18)

where

S ≡ 2(ω − ωA)ωA

v2
A

mq?

r2
?q

′′
?

R̄2q2
?

m − nq?
, (19)

and the coefficient Q1 describes the effects of hot ions and toroidicity in the same way as in
Ref. [6], i.e.,

Q1 = Qhot + Qtor ≡ ω2
A

q2
?R̄

2

v2
A(m − nq?)

q?

r2
?q

′′
?

(

ωch

ωA

(

−r

ρ

dρ̄hot

dr

)

r=r?

+
2mε?(ε? + 2∆′

?)

1 − 4(m − nq?)2

)

.

(20)
In this expression, ρhot is the hot ion density and ∆ is the Shafranov shift. As shown in
Refs. [5] and [6], Q1 has to be greater than 1/4 for an eigenmode to exist. By introducing a
new unknown function G1(x) = Φ̃1(x)

√
S + x2, and using a variational approach with the

ansatz G1 = A exp(−x2/(2a2)), we obtain for Q1 = 1 the following approximate solution:
a = 1.247 and S = 0.0983. This result agrees with the lowest order radial eigenmode found
in Ref. [5].

Now we are in a position to estimate the Φ1 contribution to ρ2 through the quadratic non-
linearity in the continuity equation,

ρΦ2

1

'
([

b0

B0
×∇Φ1

]

· ∇
)[

ρ0∇Φ1 ·
(

∇× b0

B0

)]

∼ m2

r3R

ρ0

B2
0

Φ2
1. (21)

The estimates in Eqs. (16) and (21) show that ρΦ2

1

� ρΨ2

1

, ρΦ1Ψ1
.

4. Second Harmonic Velocity Perturbation

The acoustic equation L2a
ξ2

= Sa
Φ2

1

+ Sa
Φ1Ψ1

has the form

(2ω)2

v2
A

ξ2 =
1

2B2
0

(b0 · ∇) [B2
0∇F1 · ∇F1] − b0 · (∇⊥

∇ · (B0∇Ψ1)

B2
0

×∇F1). (22)

The low β assumption does not allow us to discard ξ2 immediately (as we did with ξ1), since
second harmonic parallel velocity perturbations can arise from the nonlinear ponderomotive



5 OT01

force (not associated with plasma pressure). Straightforward estimates of the two terms on the
right-hand side of Eq. (22) give

ξ2 ∼
m2

r2Rq

Φ2
1

B2
0

⇒ ρξ2 ∼
m2

r2R2q2

ρ0

B2
0

Φ2
1 � ρΦ2

1

. (23)

These estimates show that ξ2 can safely be neglected in calculating the perturbed density.
The second harmonic compressional Alfvén wave equation reduces to L2c

Ψ2
+L2c

Φ2
= Sc

Φ2

1

+

Sc
Φ1Ψ1

. If we make an assumption that L2c
Ψ2

∼ L2c
Φ2

we find Ψ2 ∼ ε2/(m2q2)Φ2 (which is
similar to what follows from Eq. (13)), and the resulting density perturbation is relatively
small (ρΨ2

� ρΦ2
). Alternatively, we can estimate Ψ2 by assuming that L2c

Ψ2
= Sc

Φ2

1

+ Sc
Φ1Ψ1

or equivalently,

−∇ · (B0∇Ψ2) = −1

2
B2

0 (∇F1 · ∇F1) +
1

2
B0 ·

(

∇∇ · (B0∇Ψ1)

B2
0

×∇⊥Φ1

)

. (24)

The nonlinear terms on the right-hand side of this equation can be estimated as S c
Φ2

1

+Sc
Φ1Ψ1

∼
m4/(r4R2q2)Φ2

1, so that

Ψ2 ∼
Φ2

1

B0R2q2
⇒ ρΨ2

∼ m2

r2R2q2

ρ0

B2
0

Φ2
1 � ρΦ2

1

. (25)

Based on the above estimates, we neglect the Ψ2 contribution to the perturbed density. As a
result, Eq. (11) for the second harmonic density perturbation simplifies to ρ2 = ρΦ2

+ ρΦ2

1

.
In order to calculate ρΦ2

, we need to determine Φ2 from the second harmonic vorticity
equation L2v = Sv. When dealing with the source term Sv

Φ2

1

, we must pay special attention to

the cancellation of the −4πρ0(v1 ·∇)v1 and (B1 ·∇)B1 terms in a homogeneous plasma with
straight magnetic field lines. The resulting second-harmonic vorticity equation has the form

4
1

r

d

dr

(

rD
dΦ̃2

dr

)

− 16
m2

r2
Φ̃2D =

=
m

rB̄0



2
dD

dr





(

dΦ̃1

dr

)2

− m2

r2
Φ̃2

1



+ D

(

dΦ̃1

dr

d2Φ̃1

dr2
− Φ̃1

d3Φ̃1

dr3

)

− k̄‖

d2k̄‖

dr2

dΦ̃2
1

dr



 ,

(26)

where Φ2 = Φ̃2(r)e
2i(nϕ−mθ−ωt)−iπ/2. In deriving Eq. (26), flux surface averaging has been

performed to eliminate the poloidal sidebands in Sv that are proportional to sin θ or cos θ.
These off-resonant sidebands produce only a small 2m ± 1 correction to the dominant second
harmonic response.

Taylor expanding the coefficients in Eq. (26) around the zero shear point r = r? enables us
to transform Eq. (26) to

4
d

dx
(S + x2)

dΦ̃2

dx
− 16(S + x2)Φ̃2 + 4Q2Φ̃2 =

= 4x

(

(

dT

dx

)2

− T 2

)

+ (S + x2)

(

dT

dx

d2T

dx2
− T

d3T

dx3

)

+
d(T 2)

dx
, (27)

where T (x) ≡ mΦ̃1/(r?

√

B̄0), S is the eigenvalue of the AC eigenmode equation (18), and
the effects of hot ions and toroidicity have been added through the parameter Q2.
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To illustrate the second harmonic response, we choose a special case in which Qhot �
Qtor. This assumption makes Q independent of the mode numbers and, consequently, we have
Q1 = Q2 = Q. Fig. 1 shows numerical solutions to Eq. (27) in the above limit for two
different values of Q. It is essential that the values of the constant S in Eq. (27) are different
from the eigenvalues of the linear operator on the left-hand side for both values of Q, insuring
uniqueness of the solutions. These solutions give Φ2 ∼ T 2 ∼ m2Φ2

1/(r2B0) when Q ' 0.65 .
They also indicate that Φ2 decreases with increasing Q.
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Figure 1: Solution to Eq. (27) for Q = 0.65, S = 0.011 (left) and Q = 1, S = 0.10 (right). Note
that the amplitude of Φ2 decreases with increasing Q, and that Φ̃2(x) is an odd function of x whereas
Φ̃1(x) is an even function of x.

5. Second Harmonic Density Perturbation

The second harmonic density perturbation generated by Φ2 can be estimated as

ρΦ2
= −ρ∇Φ2 ·

(

∇× b0

B0

)

−
(

b0

B0
×∇Φ2

)

· ∇ρ0 ∼
(

1

R
+ (ln ρ0)

′

)

m3

r3

ρ0Φ
2
1

B2
0

, (28)

which shows that ρΦ2
is larger than ρΦ2

1

in Eq. (21) by a factor m � 1. However, the resonant
enhancement becomes less efficient when Q increases because of the increasing frequency
shift ∆ω away from the Alfvén continuum and the concomitant widening of the first harmonic
radial profile. It is evident from the numerical solution shown in Fig. 1 that the amplitude of
Φ2 decreases with increasing Q. For Q = 1, the amplitude of Φ2 is already lower than T 2

by roughly a factor of 3. For larger values of Q this numerical factor may exceed the mode
number m, making ρΦ2

1
comparable to or greater than ρΦ2

for high Q.
To compare ρ2 with ρ1 we need an estimate for the first harmonic density perturbation,

which can be obtained from Eq. (9),

ρ1 = −ρ∇Φ1 ·
(

∇× b0

B0

)

−
(

b0

B0

×∇Φ1

)

· ∇ρ ∼
(

1

R
+ (ln ρ0)

′

)

m

r

ρ0Φ1

B0

. (29)

For moderately large values of Q, the ratio ρ2/ρ1 is approximately of order

ρ2

ρ1

∼ ρΦ2

ρ1

∼ m2

r2

Φ1

B0

∼ mq

ε

|BΦ1
|

B0

. (30)

This rough estimate only refers to the maximum values of ρ1 and ρ2, whereas locally the ratio
of ρ2 to ρ1 can differ significantly from Eq. (30) as these two quantities have different radial
and poloidal dependences.
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6. Summary

The main results of this work are: (1) that the shear Alfvén perturbation is the dominant
contributor to the second harmonic density fluctuations produced by Alfvén cascades, and (2)
that one can calculate the second harmonic density perturbation from Eqs. (21) and (28) by first
solving Eq. (27), in which the radial profile of the AC eigenmode is known from Eq. (18). For
moderate values of Q, the nonlinearity of the momentum balance equation is more important
than the nonlinearity of the continuity equation and the resulting second harmonic density is
given by Eq. (28).

This analysis, together with experimental measurements, can potentially be used to de-
termine the AC amplitude at the mode center, rather than just at the edge as with magnetic
probes.
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