Overview of the RF source development at IPP Garching

E. Speth for the IPP NBI team

Max-Planck-Institut für Plasmaphysik D 85748 Garching Germany EURATOM-Association

Outline

- 1. Introduction
- 2. Experimental set-up
- 3. Results H- / D-
- 4. Future work on long pulse and size scaling

H⁻/D⁻ RF source for ITER NBI

Incentive

for the development of the RF source as an alternative to fil. source

===> no maintenance

EFDA contract (9/2002 - 6/2005):

testbeds

demonstrate 20 mA/cm² D- at 0.3 Pa; $Ie/I- \le 1$ demonstrate 3600 s pulse length demonstrate scalability to ITER size "BATMAN" "MANITU" "RADI"

IAEA Padua, May 05

2.) Exp. set-up

Testbeds

BATMAN: optimis. j-, Ie/I-, press., Cs

- pumping speed: 120 m3/s, Ti Getter
- 70 cm² extraction area, 10 sec
- P_{RF} < 140 kW, HV: 30 kV, 5A, 10 s
- deuterium operation: remote control

MANITU: uniformity, long pulse

- pumping speed: 700 m³/s, cryosorpt.
- < 380 cm² extraction area
- P_{RF} 180 kW c.w.
- HV: 15 kV, 35 A/ 35 kV, 15 A, c.w.
- deuterium operation: neutron shield

RADI: size scaling (under construction)

- 1/2 size ITER;
- no extraction, 10 sec only

Max-Planck-Institut

für Plasmaphysik

Schematic design of H⁻ RF source

Max-Planck-Institut für Plasmaphysik EURATOM Assoziation

IPP

2.) Exp. set-up

Source configurations

RF source is modular: number and shape of drivers adaptable to specific needs

type 6/1: most of H-/Dexperiments type 6/2: two drivers; optimisation of uniformity type 5: single race-track driver; internal coil

Extraction geometries

Drilling pattern and spacing of the accelerators used at IPP for negative ion extraction.

2.) Exp. set-up **Diagnostics: ion & calor. currents**

IAEA Padua, May 05

2.) Exp. set-up Diagnostics: spectroscopy

Optical emission spectroscopy : standard diagnostic tool in all three teststands

The following parameters in the driver and the expansion region are obtained in hydrogen and deuterium discharges:

- **# H**⁰ **density and H**₂⁰ **density**
- # gas temperature
- **#** T_e and n_e by using admixture of He &Ar
- # presence of impurities (oxygen, water, copper, ...)
- # Cs- and Cs⁺ -densities and fluxes
- # H⁻ -densities

.

IAEA Padua, May 05

3.) Results Low pressure issue

- # plasma flow ==> pressure gradient ∆p
- # driver requires p > 0.1 Pa
- # source filling pressure $p_0 > 0.1 Pa + \Delta p$

H⁻- yields, LAG, ≤ 0.4 Pa, ≥ 100 kW

E.Speth, Overview RF source

 $j_D = 20 \text{ mA/cm}^2$ at Ie/I- < 1 achieved reproducibly

(but is more difficult because e- suppression requires higher filter B than with H-)

Reproducibility of D- yields

- # reliable & reproducible operation over 2 months (Jan-March 05)
- **#** a better electron suppression would allow higher D⁻ currents

3.) Results

Improvements 2004 ==> 2005

- "better" Cs distribution on surfaces
- new grid mask with chamfered holes

Improvement 2004 ==> 2005

3.) Results Improvement 2004 ==> 2005

Another figure of merit for improved performance: Increased efficiency = j_{H} - / RF power

Improvement in 2005

D- shots at highest source efficiency:

Comparison H⁻ / D⁻

power limit on extr. grid:
$$I_e \ge U_x = const$$

==> for given I_e / I_D -: lower I_D -

IAEA Padua, May 05

Increase in extraction area

no adverse effect on electrically measured ion current density
calorimetric signal deteriorates for large width: effect of B!

3.) Results

How much do we understand?

Max-Planck-Institut für Plasmaphysik EURATOM Assoziation

modelling ongoing:
 volume production, extraction, surface production

3.) Results

ITER requirements vs.

actual RF source data

	ITER	IPP NNBI RF- Source
Extracted Current	20 mA/cm ² D ⁻	25 mA/cm ² D ⁻
Density	28 mA/cm ² H ⁻	33 mA/cm ² H ⁻
Source Pressure	0.3 Pa	0.3 Pa
Electron Content (j _e /j _H -)	1	<1 (PG bias, filter)
Source Dimension	1.5 x 0.6 m ²	0.32 x 0.59 m²
Extraction Area	2000 cm ²	< 300 cm ²
Uniformity	±10%	t.b.d.
Pulse Length	3600 s	< 20 s
		(tech. limitations)

(Design integration into the ITER injector is progressing: collab. Padua)

IAEA Padua, May 05

4.) Future

Long pulse operation

technical prerequesites:

- # 2 cryo sorption pumps
 800.000 l/s; collaboration FZK
 (being commissioned)
- # HV power supply
 15 kV, 35 A, c.w. (extr.)
 35 kV, 15 A, c.w. (accel.)
 (operational)
- # RF power supply
 1 MHz, 180 kW, c.w.
 (operational)
- # Neutron shielding (operational)

Long pulse (20 s)

MANITU # 61210 rf power and ion current versus time

E.Speth, Overview RF source

1/2- size ITER source

is the main step from present size to ITER size

SUMMARY

- # Current densities of H- and D- exceed the ITER target, at the required e-/ion ratio and equivalent filling pressure
- # D- yield is limited by electron power on extr. grid: electron suppression requires stronger filter field than in H-
- **#** Pressure issue will disappear with larger extraction areas
- # Long pulse operation has started; size scaling experiments (half-size ITER source) are in preparation
- # In essence an integrated development programme is being carried out indicating that the ITER targets are within reach for the RF source

IAEA Padua, May 05

SUMMARY (cont'd)

Co-workers (scientific staff):

H.D.Falter, M.Bandyopadhyay, S. Christ, A.Encheva, U.Fantz, P.Franzen, M.Fröschle, B.Heinemann, D.Holtum, M.Kick, W.Kraus, A. Lorenz, P.McNeely, R.Riedl, A.Tanga, R.Wilhelm, D.Wünderlich

Collaborations: FZK Karlsruhe, Germany, University of Augsburg, Germany CEA Cadarache, France, University of Lublin, Poland University of Charkov, Ukrainia, University of Sofia, Bulgaria ENEA RFX, Padua, Italy UKAEA, Culham, England EFDA, Garching, Germany

H- volume density monitored by Balmer line ratios

Attempts of "understanding": modelling and diagnostics

Max-Planck-Institut für Plasmaphysik EURATOM Assoziation

Optical Emission Spectroscopy (U. Fantz): Innovative measurement of H- density

from H_{α}/H_{β} ratio: (mutual neutralization $H^{-} + H^{+} \rightarrow H(n) + H$ populates predominantly n = 3 (H_{a}) needs knowledge of plasma parameters and model calculation)

==> allows correlation of

H- density in the plasma <===> H- current density in the beam !

Experiment in rough agreement with 0-D calculation (R. Wilhelm)

$$j^- = e \cdot f \cdot A \cdot n_{H^-} \cdot \frac{\mathbf{v}_{H^-}}{4}$$

f = extraction probability $\Gamma_{H-} \rightarrow j^- (= 0, 5...1)$ A= "collection factor" (= 1 ...3 $\rightarrow \sim 1/T$; T=grid transparency) v_{H-} = mean H⁻-velocity (~ 1.10⁶ cm/s at 1eV) assume: f=1 and A=3:

$$j^{-} = 20 \ mA/cm^{2} = > n_{H^{-}} = 10^{-11} \ cm^{-3} \ (for \ E_{H^{-}} = 0.8 \ eV)$$

IAEA Padua, May 05

Low pressure

3.) Results

Improvements (w.r.t. 2003/2004)

- **#** "better" Cs distribution on surfaces
- # new grid mask with chamfered holes

==> increases effective converter area in immediate vicinity of ex hole ==> increases solid angle for incoming H⁰ ==> improves ,,starting angles" of H⁻ leaving grid surface **Modelling of ion production and transport**

- 3-D Monte-Carlo codes (PhD thesis by M. Bandyopadhyay)
- driver and expansion region
- up to now: volume processes only
- improvement: surface processes, in particular Cs (D. Wünderlich)

Modelling of ion production and extraction from a negative ion source collaboration with the University of Lublin (Prof. Sielanko)

- 3D-Monte Carlo particle-in-cell program, expansion and extraction region
- trajectories (grid surface) with background plasma
- profile of the extracted ion beam
- distribution of walls and electrodes being hit by ions / electrons.

Combination of both codes, physical studies and comparison with diagnostics D. Wünderlich