Progress on the Development of a RF Driven D⁻ Ion Source for ITER NBI

Paul McNeely
for the IPP NBI Team

Max-Planck-Institut für Plasmaphysik
EURATOM Association
Boltzmannstr. 2, D-85748 Garching
Introduction

• Results from BATMAN in 2005
 • Modified LAG Grid System
 • Parameter Dependencies
 • Experiments on Magnetic Confinement

• Comments on Cs introduction

• Initial Hα – Beam Spectroscopy Results
BATMAN Performance Compared to ITER Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ITER Requirement</th>
<th>BATMAN Hydrogen</th>
<th>BATMAN Deuterium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Density H</td>
<td>28 mA/cm²</td>
<td>33 mA/cm²</td>
<td>---</td>
</tr>
<tr>
<td>Current Density D</td>
<td>20 mA/cm²</td>
<td>---</td>
<td>23 mA/cm²</td>
</tr>
<tr>
<td>Electron - Ion Ratio</td>
<td><1</td>
<td>0.36</td>
<td>0.9</td>
</tr>
<tr>
<td>Source Pressure</td>
<td>0.3 Pa</td>
<td><0.3 Pa</td>
<td><0.3 Pa</td>
</tr>
<tr>
<td>Extraction Voltage</td>
<td>9 kV</td>
<td>9.6 kV</td>
<td>9.9 kV</td>
</tr>
<tr>
<td>Pulse Length</td>
<td>3600 s</td>
<td>4 s</td>
<td>4 s</td>
</tr>
<tr>
<td>Extraction Area</td>
<td>2000 cm²</td>
<td>70 cm²</td>
<td>70 cm²</td>
</tr>
<tr>
<td>RF Power</td>
<td>---</td>
<td>144 kW</td>
<td>125 kW</td>
</tr>
<tr>
<td>PG Temperature</td>
<td>---</td>
<td>197 C</td>
<td>222 C</td>
</tr>
</tbody>
</table>
The IPP NNBI RF source:

Improvement 2005:

- using a mask with chamfered holes in front of the plasma grid
 - high yield, high RF efficiency, similar for H and D
 - no dependence on grid temperature above 130 °C
 → water cooled grid possible

- more space around holes (less surfaces)
- covering holes near heating wires

minor effect (?)
Physics of a cesiated RF source:

- \(\text{H}^- \) production at the plasma grid
 - needs Cs at the surface
 - mean free path some cm’s

- extraction of surface produced negative ions
 - problem of ‘wrong’ starting angle: ions produced at the grid are accelerated by the sheath potential back into the source and have to bend back towards the grid
 - bending mechanisms: CX, collisions, magnetic fields
 - bad beam quality

 - mask with chamfered holes
 - increases effective converter area in immediate vicinity of ex hole
 - increases solid angle for incoming \(\text{H}^0 \)
 - improves „starting angles“ of \(\text{H}^- \) leaving grid surface

\[\text{H}^0, \text{H}^+ + \text{surface e} \rightarrow \text{H}^- \]

> few eV

> 15 eV (RF)
The IPP NNBI RF source: Low Pressure / Cs Operation: Daily Results

Results 2005:

- low pressure (0.2 – 0.5 Pa)
- extraction voltage up to 10.5 kV
- RF power < 130 kW
- 3 – 6 seconds

- cal. current density well above 28 mA/cm\(^2\) (Hydrogen) / 20 mA/cm\(^2\) (Deuterium) routinely achieved

- electron/ion ratio ≤ 1

- best results:
 - 33 mA/cm\(^2\) H \(j_e/j_H = 0.5\)
 - 25 mA/cm\(^2\) D \(j_e/j_D = 1.3\)
 - 23 mA/cm\(^2\) D \(j_e/j_D = 0.9\)
The IPP NNBI RF source: Low Pressure / Cs Operation: Daily Results

Results 2005:

- low pressure (0.2 – 0.5 Pa)
- extraction voltage up to 10.5 kV
- RF power < 130 kW
- 3 – 6 seconds

- cal. current density well above 28 mA/cm² (Hydrogen) / 20 mA/cm² (Deuterium) routinely achieved

- electron/ion ratio ≤ 1

- best results:
 - 33 mA/cm² H \((j_e/j_H = 0.5) \)
 - 25 mA/cm² D \((j_e/j_D = 1.3) \)
 - 23 mA/cm² D \((j_e/j_D = 0.9) \)

- ‘fast’ recovery after leak
The IPP NNBI RF source: ITER Parameters

19 Pulses ok!
Low Pressure / Cs Operation:
Parameter Dependence: RF Power

RF power:

- no saturation with RF power, if Cs distribution o.k.
- Deuterium, $U_{ex} 9.5 \text{ kV}$, $<0.5 \text{ Pa}$
- ‘RF efficiency’:
 \[\frac{j}{P_{RF}} \]
- reduces data scatter
The IPP NNBI RF source: RF Efficiency

Results 2005:

- low pressure (0.2 – 0.5 Pa)
- extraction voltage up to 10.5 kV
- RF power < 130 kW

- RF efficiency ever higher for D
- differences due to different magnetic configuration of the ion source
- D needs more extraction voltage
- performance is limited by limitations in total / extraction voltage & in the power onto the extraction grid
Low Pressure / Cs Operation: Operation at low pressure

Low pressure operation: pressure drop in driver

- RF coupling not efficient for high RF power when driver pressure is too low
- pressure drop increases with RF power, decreases with extraction area (larger gas flow)
 - better coupling at high RF powers for large sources → more current density!

18 mA/cm² onto cal.
Filling pressure: 0.27 Pa
IPP RF source: Magnetic Confinement

- flexible modification of filter field and side wall confining magnets

- side wall confining magnets influence filter field
- changing filter field effects plasma dynamics (→ Cs!)
General Behavior:

- Source can operate without side wall confining magnets (\(j_{D^-} = 18 \text{ mA/cm}^2 \))
- Deuterium needs more filter field than hydrogen for electron suppression
 - up to now only possible with outside magnets
 - far-reaching field into the source
 - limits RF power coupling \(\rightarrow \) reduces RF efficiency
- Filter field has minor effect on source efficiency
- Next experiments with more localized filter field (near grid)
The IPP NNBI RF source: Cs Behaviour

Improvement of RF source with Cs (2004/5):

- increase of current density by a factor 10
- hot plasma grid (~150 °C)
- reduces amount of co-extracted electrons < 1
 (together with 10-15 V positive bias and sufficient filter field)

ITER requires reliable Cs seeded operation

- Cs seeded source subject to “De-conditioning”
- To achieve a properly conditioned Cs seeded source:
 - slow evaporation works best (10 mg/h)
 - look for signs that Cs on PG is “sufficient”:
 - electron current falls, ion current rises

- This requires Patience!

- diagnostic tools for more understanding (see talk of U. Fantz)
$\Delta \lambda = \lambda \cdot \frac{\alpha}{\psi}$

- measurement of stripped atoms leaving the accelerator
- depends on grid optics
- main stripping in first gap
Hα Spectroscopy: Stripping Losses

- **low stripping:**
 \[\dot{J}_{\text{cal}} = \dot{J}_{\text{extracted}} \]
 (assume all D- have full energy)

- **Calculation:**
 - only conductance of grids
 - gas temperature of 300 K
 - but source: 1000 – 1200 K

- **same model as used in ITER stripping loss calculations**
 - ITER calculations may be too pessimistic?
 - modelling with trajectories for stripping losses in the grid necessary
Summary

- exceed all ITER objectives except pulse length simultaneously on BATMAN
 - $>22 \text{ mA/cm}^2$ in deuterium, $>30 \text{ mA/cm}^2$ in hydrogen
 - at $I_{\text{elec}}/I_{\text{ion}} < 1$ and at pressures below 0.3 Pa in driver and filling pressure
- reliable and reproducible operation over 3 months
- even higher source efficiency for deuterium
- stronger filter required for Deuterium: modifications under way
- wall confinement affects source efficiency

- deuterium operation is limited by
 - power on extraction grid due to higher electron ion / ratio
 - RF coupling at low pressures due to pressure drop in driver and far-reaching filter fields

larger sources and modified filter fields:
- increase in RF power possible
- expect same current densities for Deuterium as for hydrogen!
• **Electrical Currents are all measured:**
 - I_{ion} gives J_{ion} (elec)
 - I_{elec}
 - I_{GG} gives J_{ion} (GG)

• **Calorimeter signals give J_{ion} (TC) and J_{ion} (W)**

• J_{ion} (TC) and J_{ion} (W) are systematically different
 - Likely the flow meter is slightly off

• **Accountability: J_{ion} (TC) to J_{ion} (elec) \approx 90%**.
Beam extraction: BATMAN

HV Power Supply

- **U_{HV}**
- **I_{drain}**

Plasma Grid

- **$I_{EG} (e)$**
- **$I_{gg} (ions)$**
- **$I_{ion} (ions)$**

Extraction / e Suppression Grid

Grounded Grid

Calorimeter with Spatial Resolution

Tank

- **H^-**
- **i_{ion}**
- **j_{cal}**
Spectroscopy on the Cs 852 nm Line

Before start of first Cs evaporation after source modifications

After start of Cs evaporation (4 mgr evaporated)
Electric vrs Calorimetric Current Densities

Electric $J_{H^{-}}$ (mA cm$^{-2}$)

$J_{\text{electric}} = J_{\text{ion (electric)}} - J_{\text{ion (G3)}}$

$J_{\text{cal}} = 0.92 J_{\text{electric}}$