

Progress on the Development of a RF Driven D⁻ Ion Source for ITER NBI

Paul McNeely for the IPP NBI Team

Max-Planck-Institut für Plasmaphysik EURATOM Association Boltzmannstr. 2, D-85748 Garching

IAEA TM on NNBI, Padua, May 9-11, 2005

Introduction

- Results from BATMAN in 2005
 - Modified LAG Grid System
 - Parameter Dependencies
 - Experiments on Magnetic Confinement
- Comments on Cs introduction
- Initial $H\alpha$ Beam Spectroscopy Results

BATMAN Performance Compared to ITER Requirements

Parameter	ITER Requirement	BATMAN Hydrogen	BATMAN Deuterium
Current Density H	28 mA/cm ²	33 mA/cm ²	
Current Density D	20 mA/cm ²		23 mA/cm ²
Electron - Ion Ratio	<1	0.36	0.9
Source Pressure	0.3 Pa	<0.3 Pa	<0.3 Pa
Extraction Voltage	9 kV	9.6 kV	9.9 kV
Pulse Length	3600 s	4 s	4 s
Extraction Area	2000 cm ²	70 cm ²	70 cm ²
RF Power		144 kW	125 kW
PG Temperature		197 C	222 C

P. McNeely

IAEA TM on NNBI, Padua, May 9-11, 2005

The IPP NNBI RF source:

Improvement 2005:

- using a mask with chamfered holes in front of the plasma grid
 - high yield, high RF efficiency, similar for H and D
 - no dependence on grid temperature above 130 °C
 → water cooled grid possible

The IPP NNBI RF source: Low Pressure / Cs Operation

Physics of a cesiated RF source:

- H- production at the plasma grid
 - needs Cs at the surface
 - mean free path some cm's

- extraction of surface produced negative ions
 - problem of 'wrong' starting angle: ions produced at the grid are accelerated by the sheath potential back into the source and have to bend back towards the grid
 - → bending mechanisms: CX, collisions, magnetic fields
 - → bad beam quality

mask with chamfered holes

- → increases effective converter area in immediate vicinity of ex hole
- → increases solid angle for incoming H⁰
- \rightarrow improves "starting angles" of H⁻ leaving grid surface

The IPP NNBI RF source: Low Pressure / Cs Operation: Daily Results

Results 2005:

- low pressure (0.2 0.5 Pa)
- extraction voltage up to 10.5 kV
- RF power < 130 kW
- 3-6 seconds
- cal. current density well above 28 mA/cm² (Hydrogen) / 20 mA/cm² (Deuterium) routinely achieved
- electron/ion ratio ≤ 1
- best results: 33 mA/cm² H (j_e/j_H = 0.5) 25 mA/cm² D (j_e/j_D = 1.3) 23 mA/cm² D (j_e/j_D = 0.9)

The IPP NNBI RF source: Low Pressure / Cs Operation: Daily Results

Results 2005:

- low pressure (0.2 0.5 Pa)
- extraction voltage up to 10.5 kV
- RF power < 130 kW
- 3-6 seconds
- cal. current density well above 28 mA/cm² (Hydrogen) / 20 mA/cm² (Deuterium) routinely achieved
- electron/ion ratio ≤ 1
- best results: 33 mA/cm² H (j_e/j_H = 0.5) 25 mA/cm² D (j_e/j_D = 1.3) 23 mA/cm² D (j_e/j_D = 0.9)

• 'fast' recovery after leak

The IPP NNBI RF source: ITER Parameters

Low Pressure / Cs Operation: Parameter Dependence: RF Power

RF power:

- no saturation with RF power, if Cs distribution o.k.
- Deuterium, U_{ex} 9.5 kV, <0.5 Pa
- 'RF efficiency':

 j / P_{RF}

• reduces data scatter

The IPP NNBI RF source: RF Efficiency

Results 2005:

- low pressure (0.2 0.5 Pa)
- extraction voltage up to 10.5 kV
- RF power < 130 kW
- RF efficiency ever higher for D
- differences due to different magnetic configuration of the ion source
- D needs more extraction voltage
- performance is limited by limitations in total / extraction voltage & in the power onto the extraction grid

Low Pressure / Cs Operation: Operation at low pressure

Low pressure operation: pressure drop in driver RF on (80 kW) 18 mA/cm² onto cal. 2.0 0.5 Filling pressure: 0.27 Pa Deuterium 0.4 HV on $(U_{ex} = 9 \text{ kV})$ Ion Current / (A) 1.5 Pressure / (Pa) 0.3 **PINI-Insulator** Extraction System 1.0 Source 0.2 0.5 0.1 Scan Driver range 0.0 0.0 2 0 3 F 6 8 Plasma flow Ceramic **RF-Coil** Time / (s) Cylinder

- RF coupling not efficient for high RF power when driver pressure is too low
- pressure drop increases with RF power, decreases with extraction area (larger gas flow)
 better coupling at high RF powers for large sources → more current density !

flexible modification of filter field and side wall confining magnets

- side wall confining magnets influence filter field
- changing filter field effects plasma dynamics (\rightarrow Cs!)

IPP RF source: Magnetic Confinement

General Behavior:

Source can operate without side wall • confining magnets ($\rightarrow j_D = 18 \text{ mA/cm}^2$) 0.40

0.35

0.30

0.25

0.20

0.6

0.4

0.2

0.0

j_e / P_{RF}

뭠

60

j_o-/P_{RF}

- Deuterium needs more filter field than hydrogen for electron suppression
 - up to now only possible with outside magnets
 - far-reaching field into the source
 - ▶ limits RF power coupling \rightarrow reduces RF efficiency
- filter field has minor effect on source efficiency
- next experiments with more localized filter field (near grid)

P. McNeely

H. Co-Sm

D, Co-Sm

D. Fe-Nd

The IPP NNBI RF source: Cs Behaviour

Improvement of RF source with Cs (2004/5):

- increase of current density by a factor 10
- hot plasma grid (~150 °C)
- reduces amount of co-extracted electrons < 1
 (together with 10-15 V positive bias and sufficient filter field)

ITER requires reliable Cs seeded operation

- Cs seeded source subject to "De-conditioning"
- To achieve a properly conditioned Cs seeded source:
 - slow evaporation works best (10 mg/h)
 - Iook for signs that Cs on PG is "sufficient":
 - \rightarrow electron current falls, ion current rises
- This requires Patience!
- diagnostic tools for more understanding (\rightarrow see talk of U. Fantz)

$H\alpha$ Spectroscopy: Typical Spectrum

IPP

$H\alpha$ Spectroscopy: Stripping Losses

- low stripping: 0.3 Deuterium, 18 mA/cm², 9 kV $j_{cal} = j_{extracted}$ Stripping Losses / (%) (assume all Dhave full energy) calculation 0.2 with ITER-like mode Calculation: • only conductance 0.1 of grids easurement • gas temperature of 300 K • but source: 0.0 1000 – 1200 K 0.2 0.4 0.6 0.8 1.0 Source Pressure / (Pa)
- same model as used
 in ITER stripping loss calor
 - in ITER stripping loss calculations
 - ITER calculations may be too pessimistic ?
 - ightarrow modelling with trajectories for stripping losses in the grid necessary

Summary

- exceed all ITER objectives except pulse length simultaneously on BATMAN
 - >22 mA/cm² in deuterium, >30 mA/cm² in hydrogen at I_{elec}/I_{ion} < 1 and at pressures below 0.3 Pa in driver and filling pressure
 - reliable and reproducible operation over 3 months
 - even higher source efficiency for deuterium
 - stronger filter required for Deuterium: modifications under way
 - wall confinement affects source efficiency
- deuterium operation is limited by
 - power on extraction grid due to higher electron ion / ratio
 - RF coupling at low pressures due to pressure drop in driver and far-reaching filter fields

larger sources and modified filter fields:

- \rightarrow increase in RF power possible
- \rightarrow expect same current densities for Deuterium as for hydrogen!

BATMAN (Current Accountability)

- **Electrical Currents are all measured:**
 - *I_{ion}* gives *J_{ion}* (elec)
 - I_{elec}
 - I_{GG} gives J_{ion} (GG)

Shot 24387 $I_{drain} = 4.54 \text{ A}$ $I_{elec} = 2.15 \text{ A}$ $I_{ion} = 1.98 \text{ A} (26.64 \text{ mAcm}^{-2})$ $I_{GG} = 0.33 \text{ A} (4.39 \text{ mAcm}^{-2})$ $J_{H_{-}}$ (TC) = 20.5 mAcm⁻²

- Calorimeter signals give J_{ion} (TC) and J_{ion} (W)
- J_{ion} (TC) and J_{ion} (W) are systematically different Accounting
 - Likely the flow meter is slightly off
- Accountability: J_{ion} (*TC*) to J_{ion} (*elec*) \approx 90%.

Layout

Beam extraction: BATMAN

Spectroscopy on the Cs 852 nm Line

BATMAN (LAG)

$J_{cal} = 0.92 J_{electric}$ Electric J_{H-} (mAcm⁻²) $J_{electric} = J_{ion}$ (electric) - J_{ion} (G3)

Electric vrs Calorimetric Current Densities