

The H⁻/D⁻ RF source at the edge towards large area beam extraction and long pulses

W. Kraus

for the NNBI Group

Max-Planck-Institut für Plasmaphysik EURATOM Association Boltzmannstr. 2, D-85748 Garching

IAEA Technical Meeting, Padua, 9 – 11 May 2005

Developement of RF sources for ITER

At IPP under an EFDA contract since 2002 on two testbeds

Goals

Batman:

- High current density in H⁻ and D⁻
- low electron current,
- low pressure operation

With small extraction area (67 - 74 cm^2) and short pulses < 6 s

MANITU (multi ampere negative ion test unit)

- Large area beam extraction
- long pulse operation up to 3600 s in D⁻

Outline

- Extension of the extraction area
- Upgrade of MANITU for long pulses
 - Source
 - Power supply
 - Vacuum system
 - Calorimeter
 - Neutron shielding
- First long pulses with partely upgraded set-up

Extension of the extraction area

74 cm² Initial size

152 cm²

306 cm²

Beam extraction with large extraction area

IPP

74 => 152 cm²:

No substantial change of the ion current density jion. Max. 19.3 mA/cm² at 0.45 Pa on the calorimeter (90 kW).

Ion current density only slightly reduced

Max. jion of 32 mA/cm² corresponding

to a total H⁻ current of 9.7 A (0.5 Pa, 100 kW, 10.5 kV)).

Calorimetric current with large extraction area

152 => 306 cm²:

Smaller fraction of the ion current reaches the calorimeter

Possible reason:

deflection of extracted ions due to the strong increase in the magnetic filter field at the edge of the large extraction area

Ibb

Pressure in the driver

The pressure drop during the RF discharge is much smaller with the larger extraction areas (gas flow is higher in relation to the plasma flow)

1

100

Upgrade of the RF Power Supply for cw operation

HV Power Supply

New HV circuit and voltage regulation system using two triodes

 \Rightarrow No longer dependent on the central IPP HV power supply

 \Rightarrow More time for experiments

Upgrade of the source

- New actively cooled Faraday
 Shield
- Gas cooling of the plasma grid
- Temperature control of source body and plasma grid

Vacuum system

IAEA Technical Meeting, Padua, 9 – 11 May 2005

Calorimeter for cw operation

- Actively cooled
- Diameter of 600 mm
- 350 kW total power capability
- Maximum power density of 6 MW/m².
- 4 ASDEX-Upgrade calorimeter panels
- Beam profile measurement

Data and testbed control system

• New control system

including HF and HV power supply, gas and vacuum system

Improved data acquisition system

compatible with long pulses (Carmac => µ-MUSYCS)

Neutron shielding I

Source and the extraction system are enclosed in a cabine with 20 cm polyethylene walls, calorimeter by 30 cm thick double walled water

tanks inside the vacuum

chamber.

Neutron shielding II

Calculated neutron radiation dosis

Total pulse duration of > 6 hours per year (6 mSv/h) for Deuterium operation.

Operational are the new RF and HV power supplies, the control and the data acquisition system.

As an intermediate solution an **inertially cooled calorimeter** is used, which allows pulses of several 10 seconds length

Extraction area: 152 cm²

The maximum pulse length is presently limited by the heat up of the old Faraday shield and the pressure rise in the vacuum tank.

First beam extraction with extended pulse length

lel \downarrow and j(H-) \uparrow some but not yet sufficient surface production

First 20 s pulse

70 kW, 0.5 Pa

Current density on the calorimeter 8.7 mA/cm²

- 2 mm Mo plate with chamfered holes mounted onto the plasma grid.
 Batman results => higher H⁻ current and lower electron current
- In June the actively cooled Faraday shield and the long pulse calorimeter will be available and the cyro pumps will be operational.
- Extraction area 152 => 250 cm²

- The electrically measured H⁻ current density showed no significant dependence on the extraction area.
- The rf source has the potential to deliver a H⁻ current of nearly 10 A over an area corresponding to that supplied by one driver in the ITER source.
- The extension of the pulse length required substantial modifications of the source and the MANITU testbed. Using a partly upgraded system, first beam extraction experiments with pulse lengths up to 20 s have been successfully carried out.