Prediction of neutron source, tritium production and activation for long-pulse operation of the ITER Neutral Beam Test Facility

presented by T T C Jones

on behalf of

S J Cox, A Emmanouilidis, T T C Jones, and M J Loughlin

UKAEA Culham
EURATOM/UKAEA Fusion Association
Culham Science Centre, Abingdon, UK, OX14 3DB

Work conducted under European Fusion Development Agreement and funded by Euratom and UK Engineering and Physical Science Research Council
Outline

Motivation
• Input to ITER NB Test Facility safety analysis: Neutron and Tritium sources

Local Mixing Model for Beam-Target interaction
• Brief description of LMM
• Hydrogenic build-up and isotope exchange
• Neutron Rates from DD and DT reactions

Tritium Retention
• Limitations LMM model
• Thermal Diffusion Model

Neutronics and Activation Calculations for NBTF
• Methodology
• Dose rate results

Conclusions
Motivation

Input to Radiological Assessment

- Neutron production (2.5 & 14MeV) from 1MeV D beam-target reactions
- Neutron Activation
- Tritium production & retention

For prediction of

- Hands-on maintainability
- Requirements for Licensing
- Transportability of components (NBTF to ITER Site) if needed
- Shielding requirements

Helping to define

- Operational Plan constraints
- e.g. periods of H beam operation (to avoid neutron production; target cleanup)
Local Mixing Model code (LMM*) (1)

Treats the basic processes of Beam-Target interactions
- Slowing-down of fast beam ions in the target material (Cu)
- Hydrogenic build-up and isotope exchange
- Fusion Reaction probability during slowing-down

e.g.

Relative Probability Distribution $P(x)$ of implantation depths of $1\text{MeV} \ H, \ D \ & \ T$

Fills to saturation quickly

Fills to saturation slowly

Local Mixing Model code (LMM) (2)

Local Isotopic Build-up and Exchange

- Unsaturated regions fill up according to where the fast particles come to rest:
 e.g. for 2 species (say D & T) with flux densities Φ_1, Φ_2

\[
\begin{align*}
\frac{dn_1(x)}{dt} &= P_1(x) \cdot \Phi_1 \\
\frac{dn_2(x)}{dt} &= P_2(x) \cdot \Phi_2 \\
\end{align*}
\]

(locally non saturated target: $n_1 + n_2 < n_{sat}$)

- In saturated regions an arriving particle displaces one already trapped

\[
\begin{align*}
\frac{dn_1(x)}{dt} &= \frac{n_2(x)}{n_{sat}} \cdot P_1(x) \cdot \Phi_1 - \frac{n_1(x)}{n_{sat}} \cdot P_2(x) \cdot \Phi_2 \\
\frac{dn_2(x)}{dt} &= -\frac{dn_1(x)}{dt} \\
\end{align*}
\]

(locally saturated target: $n_1 + n_2 = n_{sat}$)
Local Mixing Model code (LMM) (3)

Approach to saturation for 1MeV D beam at 1mAcm⁻²

- i.e. a representative power density 10MWm⁻² normal to surface of NBTF Dump/Calorimeter

250hr foreseen NBTF operation at full power

⇒ Assumption that target is always deuterium-saturated (20% Cu atom density) in implantation zone is reasonable but conservative

⇒ 2.5 MeV neutron production linear with D beam fluence:

\[N_{2.5} = 3.78 \times 10^{12} \text{ Coulomb}^{-1} \]
Treatment of Secondary DT Reactions in LMM (1)

DD reactions produce Tritium (at same rate as 2.5MeV neutrons)

\[
\begin{align*}
D + D & \rightarrow^{50\%} \text{He}^3 + n \quad Q = 3.27\text{MeV} \\
D + D & \rightarrow^{50\%} \text{T} + p \quad Q = 4.03\text{MeV}
\end{align*}
\]

- In **Laboratory Frame** the T product energy depends on angle w.r.t. incoming D
- T energy distribution in LAB therefore linked to differential reaction cross-section

Most probable T birth energy

- = 1MeV in LAB frame

⇒ Suggests treating T as component of incoming beam at 1MeV

⇒ T source rate computed at \(t_n \)

added to “beam” at next iteration of code (\(t_{n+1} \))

Data provided by M Pillon, ENEA Fusion Division Technology Section
Secondary DT Reactions in LMM (2)

LMM computes T content within Implantation Zone

- Recall implantation depths approximately similar for D, T (≈ 6µm)
- Secondary reaction rate contributions from D→T and T→D within Implantation Zone computed

<table>
<thead>
<tr>
<th>Pulses</th>
<th>Fluence D [C cm⁻²]</th>
<th>Fluence T [C cm⁻²]</th>
<th>DT neutr. [C⁻¹ cm⁻²]</th>
<th>TD neutr. [C⁻¹ cm⁻²]</th>
<th>Ret. T [cm⁻²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1.8·10³</td>
<td>1.09·10⁻³</td>
<td>1.2·10⁵</td>
<td>5.2·10⁷</td>
<td>1.0·10¹⁰</td>
</tr>
<tr>
<td>5000</td>
<td>1.8·10⁴</td>
<td>1.09·10⁻²</td>
<td>1.5·10⁵</td>
<td>5.2·10⁷</td>
<td>1.5·10¹⁰</td>
</tr>
<tr>
<td>50000</td>
<td>1.8·10⁵</td>
<td>1.09·10⁻¹</td>
<td>1.9·10⁵</td>
<td>5.2·10⁷</td>
<td>2.2·10¹⁰</td>
</tr>
</tbody>
</table>

Characteristics of LMM predictions

- T → D reactions dominate (>99%) **BUT only ≈ 10⁻⁵ DD rate**
- D → T reactions negligible; T constantly displaced by majority D in real beam
- Retained T (within Implantation Zone) increases asymptotically; \(n_T \approx 10^{-9} n_D \)
Limitations of LMM

- Incoming D gives up most of its energy in a narrow distance range and most T ions born around *most probable D penetration depth* R_D.
- From this location T can penetrate a further characteristic maximum distance R_T.
- D and T implantation zones do not therefore co-incide.
- $D \rightarrow T$ and $T \rightarrow D$ reaction rates therefore overestimated *(i.e. conservative)*.

- T density overestimated.
- T removal by incoming D overestimated by LMM.
- T in this region not included described by LMM.
- No removal by incoming D possible.
Tritium Retention (1)

LMM well-validated* by measured neutron production in beam-target experiments in aged material where voids and microscopic bubbles exist within implantation layer

* Ciric, de Esch, Falter, Jones, Svensson Fus Technol 1 (1998) 481-484

• In undamaged Cu Thermal Diffusion can be described by a temperature-dependent diffusion coefficient

\[D = D_0 \cdot \exp\left(-\frac{E_D}{kT}\right) \text{ [cm}^2\cdot\text{s}^{-1}] \]

<table>
<thead>
<tr>
<th>Temperature T (K)</th>
<th>Diffusion Constant (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>473</td>
<td>6.04\times10^{-6} \text{ cm}^2\cdot\text{s}^{-1}</td>
</tr>
<tr>
<td>293</td>
<td>1.46\times10^{-8} \text{ cm}^2\cdot\text{s}^{-1}</td>
</tr>
</tbody>
</table>
Tritium Retention (2)

Combined LMM and Thermal Diffusion Model

- Worst-case assumption: entire T source Φ_T at deepest physically possible location

- T density n_0 overestimated by LMM
- Defines conservative boundary condition for Diffusion Model
- Solve diffusion equation for $n_T(x=R_D+R_T)$ assuming linear gradients for $\Phi_T = \Phi_2 + \Phi_3$ (in steady-state)
Tritium Retention (3)

Results

- Model is linear with D current density
- Therefore only need to consider total D fluence; assume 250 hrs at 1MeV, 40A
- Assume thermal diffusion stops during beam-off periods (conservative)
- Assume 2mm distance to water cooling channel (Swirl-Tube design)

Total T production: \(\approx 0.25 \text{TBq} \)

- T released to cryopump \(0.20 \text{TBq} \)
- T diffused to cooling water \(0.05 \text{TBq} \)

Retained in Dumps \(70 \text{MBq} \) c.f. IAEA Exempt Transport Package 1GBq

Max. areal density (for 2mAcm\(^{-2}\)) \(3.5k\text{Bqcm}^{-2} \)
Neutronics calculations for NBTF

Input

- Mass distribution of materials of beamline components
- Spatially distributed neutron source (allowing for beam ‘footprints’, easily scaled from LMM predicted source terms since these are all linear with D flux)

Output

- Neutron Transport (MCNP): neutron flux and spectrum in every material cell Passed as input to Activation calculations (FISPACT)
Summary of results for dose rate from activation

Assume operating history comprising 250 hrs full-power operation with time-dependent profile:
- 3 campaigns of 100 days with 100 pulses/day (20s duration)
- 1 campaign of 14 days with 6 pulses/day (3600s duration)

<table>
<thead>
<tr>
<th>Material</th>
<th>LLW after 1 year</th>
<th>Above Hands on limit after one year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless Steel</td>
<td>Vessel around calorimeter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horizontal lip of vessel at fast shutter end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>End plate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calorimeter- Support structure (2)</td>
<td>Calorimeter- Support structure</td>
</tr>
<tr>
<td></td>
<td>RID Wall (2)</td>
<td>RID Wall (2)</td>
</tr>
<tr>
<td>“Water & steel”</td>
<td>Pipework around calorimeter (12)</td>
<td>Calorimeter lower pipework</td>
</tr>
<tr>
<td></td>
<td>Pipework around RID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling pipe (2)</td>
<td></td>
</tr>
<tr>
<td>CuCrZr</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Copper</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Aluminium</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Alumina</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

Numbers in parentheses show number of components above the indicated limit, where this is >1

Note:
Activation from 2.5MeV neutrons dominates (by factor > 10^4, due to lower 14MeV neutron source rate)
Conclusions

Applicability of LMM for DD and secondary DT reactions in NBTF

• Previously benchmarked against D→D beam-target experiments
• Convenient to treat T product ions to incoming beam due to similarity of energy
• Limitations inherent in this approach result in overestimated neutron sources *i.e. conservative for safety analysis*
• T retention predictions too optimistic since LMM only treats D implantation zone

T retention

• However, LMM can be used to set a conservative boundary condition for Thermal Diffusion model
• Predicted T retention in NBTF components appears to be easily manageable

Activation

• LMM predictions of 2.5MeV and 14MeV neutrons used as input source terms
• Components not excessively activated except for localised “hot spots”
Prediction of neutron source, tritium production and activation for long-pulse operation of the ITER Neutral Beam Test Facility
Benchmark of LMM against Analytic Model (saturated target)

- Calculation of D→D beam-target reaction rate (2.45MeV neutron production)

- Assume target is uniformly saturated with deuterium up to a depth ≈ 10µm which is beyond the mean implantation depth (≈ 7µm)

- **Local Mixing Code (LMC) prediction** of 2.45 MeV neutron production from D→D beam-target reactions expressed per Coulomb of incident D fluence:
 \[3.78 \times 10^{12} \text{ C}^{-1}\]

- This is within 7% of prediction of Kim formula\(^{(3)}\):
 \[Y_N = I_{\text{beam}}(A) \cdot [D]_{\text{solid}}(\text{cm}^{-3}) \cdot W_{DD} / e\]

\(^{(3)}\) J Kim, Nucl Tech 44 315 (1979)
Effect of non-normal beam incidence

- **Effect of non-normal incidence of beam on LMM**
 - in LMM normal incidence of beam upon target material has been assumed

- Consider effect of increasing the angle of incidence away from normal at constant power density at the surface

- **Consequences for LMM**
 - incoming D still slows down within saturated region
 - volume accessible is **reduced** by factor $1 / \cos \theta$ cf. normal incidence (ignoring effects of scattering)

 \Rightarrow saturation is approached even faster than normal incidence case

 \Rightarrow further justifies assumption of saturated target (though still pessimistic, i.e. contributes to safety margin)
Secondary DT Reactions in LMM

Physical validity of LMM treatment of Secondary Reactions

- Fast T **physically born in the material with a distribution of angles and velocities**
- Significant proportion of T therefore goes beyond range of incoming D
- D and T implantation zones do not therefore co-incide
- D \(\rightarrow\) T and T \(\rightarrow\) D reaction rates therefore overestimated **but represents a margin of conservatism** for the safety analysis
Radiological Limits

• Activation - IAEA
 - ILW at > 1.2×10^7 Bq/kg
 - LLW at > 7×10^4 Bq/kg
 - Considered “Non radioactive” below this

• Dose Rate
 - ‘Hands on Limit’ at 10µSv/h
 - based on surface contact dose for an infinite-slab model

ILW = Intermediate Level Waste; LLW = Low Level Waste
Dose Rate: Cell 242 (calorimeter water pipe)

The only cooling pipe to have a dose level above the ‘hands-on’ limit after 1 yr
Results - DD vs DT neutron activation of vacuum vessel

- 2.5 MeV neutrons from D→D reactions dominate

- Although the specific activation per 14 MeV neutron from DT reactions is 3-4 \times higher than for D→D neutrons, the DT reaction rate is more than 4 orders of magnitude lower than for D→D reactions.