Fourth IAEA Technical Meeting on "Negative Ion Based Neutral Beam Injectors" Padova, Italy, May 9 – 11, 2005

Volume Production of D⁻ Negative Ions in Low-Pressure D₂ Plasmas

- Negative Ion Densities versus Plasma Parameters -

Osamu Fukumasa and Shigefumi Mori

Department of Electrical and Electronic Engineering Faculty of Engineering, Yamaguchi University, Ube 755-8611, Japan

CONTENTS

- 1. Introduction
- 2. Experimental Set-up
- 3. Experimental Results
- 4. Summary

Background

Two-step process of H⁻ volume production

(1) $H_2(v"=0) + e_{fast} (E_{fe} > 20-30eV) \rightarrow H_2^*(v') + e'_{fast}$ $H_2^*(v') \rightarrow H_2(v") + hv$

(2) $H_2(v'' > 5) + e_{slow} (\kappa T_e = 1eV) \rightarrow H^- + H$

Optimization (Enhancement)

Tandem two-chamber system

• optimization of f(E), n_e and $T_e \rightarrow$ magnetic filter/plasma grid Introduction of cesium

• enhancement of H^- production (surface effect)

Objectives

Development of high current D⁻ ion sources (1) Production and control of D₂ plasmas

- (2) Isotope effect of H^- and D^- production
 - measurement of VUV emission
 - \cdot measurement of H⁻ and D⁻ densities
 - \cdot extraction of H^- and D^- currents

Experimental Set-up

Experimental Set-up

 $V_d = 70 \text{ V}, I_d = 5 \text{ A},$

 $p(H_2) = 1.5 \text{ mTorr}$

Intensity of M.F. : ●150G, ■120G, ×100G, ▲80G, ◆60G

 $V_d = 70 \text{ V}, I_d = 5 \text{ A},$

 $p(D_2) = 1.5 \text{ mTorr}$

Intensity of M.F. : ●150G, ■120G, ×100G, ▲80G, ◆60G

Behaviors of primary electrons in the source

Axial distributions of plasma parameters at $B_{MF} = 80 \text{ G}$

Yamaguchi Univ. Plasma Lab.

 $p(H_2 \text{ or } D_2) = 1.5 \text{ mTorr}$

Volume production versus plasma parameters

DA with 150G, \triangle DA with 80G, \bigcirc ED with 150G, \triangle ED with 80G

Experimental conditions are as follows: $V_d = 70$ V, $I_d = 5$ A, $p(H_2) = 1.5$ mTorr

DA with 150G, \triangle DA with 80G, \bigcirc ED with 150G, \triangle ED with 80G

Experimental conditions are as follows: $V_d = 70$ V, $I_d = 5$ A, $p(D_2) = 1.5$ mTorr

$$V_d = 70 \text{ V}, I_d = 5 \text{ A}$$

 $V_{ex} \sim 1.5 \text{ kV}$
Extraction position: $z = -2.5 \text{ cm}$

Negative ion densities versus negative ion currents

Intensity of M.F.:

(Plasma Grid position)

●150G, ■120G,

Extraction position: z = -1.5 cm

▲80G

$$V_d = 70 \text{ V}, I_d = 5 \text{ A}$$

 $V_{ex} \sim 1.5 \text{ kV}$

Measurement position: z = -0.5 cm (1 cm from Plasma Grid)

Yamaguchi Univ. Plasma Lab.

Typical VUV spectra from H₂ and D₂ plasmas

 $B_{\rm MF} = 80 \text{ G}, V_d = 70 \text{ V}, I_d = 5 \text{ A}, p(\text{H}_2 \text{ or } \text{D}_2) = 3 \text{ mTorr}$

Integrated VUV spectra from H₂ plasmas

Intensity of M.F.: ●150G, ■120G, **A**80G

 $V_d = 70 \text{ V}, I_d = 5 \text{ A}, p(\text{H}_2) = 1 - 7 \text{ mTorr}$ $p(\text{H}_2) = 2 \text{ mTorr}, V_d = 70 \text{ V}, I_d = 1 - 7 \text{ A}$

Integrated VUV spectra from H₂ and D₂ plasmas

 $B_{\rm MF} = 80 \text{ G}, V_d = 70 \text{ V}, I_d = 5 \text{ A}$

 $B_{\rm MF} = 80$ G, $p(H_2 \text{ or } D_2) = 2$ mTorr

Summary

(1) Production and control of D_2 plasmas

- Controlling spatial distributions of n_e and T_e with the MF
- Good Combination between the MF and the filament position

(2) Volume production of D^- ions (Isotope effect)

- Optimum condition for D⁻ production is different from that for H⁻ production. (for example, pressure)
- Extracted H⁻ and D⁻ currents have clear relations with ion densities in the source.
- VUV emission from D₂ plasmas is slightly lower than that from H₂ plasmas. (0.9 ~ 0.95)

For further studying D⁻ production, simultaneous measurements of VUV emission and negative ion density in the source is necessary.

END

Axial distributions of H⁻ ion densities

Axial distributions of H⁻ and D⁻ ion densities

Axial distributions of H⁻ and D⁻ ion densities

Production Processes of Negative Ions

Volume Production

Surface Production Process in Cs-seeded Volume Negative Ion Source

Yamaguchi Univ. Plasma Lab.

Negative ion density measurement by laser photodetachment

Axial distributions of plasma parameters in D₂ plasmas

Axial distributions of plasn Plasma Lab.

DA with 150G, \triangle DA with 80G, \bigcirc ED with 150G, \triangle ED with 80G

Experimental conditions are as follows: $V_d = 70$ V, $I_d = 5$ A, $p(D_2) = 3.0$ mTorr

Power dependence of VUV spectra from H₂ plasmas

guchi Univ.

Plasma Lab.

 $p(H_2) = 2 \text{ mTorr}, V_d = 70 \text{ V}, I_d = 1 - 7 \text{ A}$