Fourth IAEA Technical Meeting on "Negative Ion Based Neutral Beam Injectors" May 9-11 2005, Padova - Italy

Modeling of Negative Ion Transport in Cesium-Seeded Volume Negative Ion Sources

Osamu Fukumasa and Ryo Nishida

Department of Electrical and Electronic Engineering Faculty of Engineering, Yamaguchi University, Ube 755-8611, Japan

CONTENTS

- 1. Introduction
- 2. Concept of Simulation Model
- 3. Numerical Results
- 4. Summary

Two-step process of H⁻ volume production

(1) $H_2(v"=0) + e_{fast} (E_{fe} > 20 \sim 30 eV) \rightarrow H_2(v")$ (2) $H_2(v">5) + e_{slow} (T_e=1 eV) \rightarrow H^- + H$

Optimization (Enhancement)

Tandem two-chamber system magnetic filter/plasma grid \rightarrow f(E), n_e, T_e Introduction of cesium enhancement of H⁻ production \rightarrow cesium effect (surface) Extraction of negative ions probability, beam optics

(1) Optimization of H⁻ volume production

 \rightarrow plasma parameter dependence

(2) Modeling cesium effects

- \rightarrow surface effect, volume effect
- \rightarrow enhancement of H⁻ production

(3) Estimation of extracted H⁻ current

- \rightarrow pressure dependence of extraction probability
- \rightarrow average energy of extracted H⁻ ions
- \rightarrow pressure dependence of extracted H⁻ current

(4) Modeling D⁻ production, isotope effect

Numerical Model

Χ

Motion equation

Magnetic filter

Construction of line-cusp magnetic field

Cross-sectional view of the model geometry for the second chamber

Motion equation

Magnetic filter

$$B_{y} = B_{0} \exp\left[-\left(\frac{z-z_{0}}{l_{B}}\right)^{2}\right]$$

$$B_0 = 120 \text{ (Gauss)}$$

$$z_0 = 2 \text{ (cm)}$$

$$l_B = 4 \text{ (cm)}$$

V

Х

Collisional processes (2nd, Pressure = 5mTorr with Cs)

	Surface pro	duced H ⁻ ions	Volume produced H ⁻ ions		
Collisional processes	mfp [cm]	Collision probability [%]	mfp [cm]	Collision probability [%	
H^- + e \rightarrow H + $2e$	141.82	0.39	93.18	0.47	
H^- + H^+ $ ightarrow$ 2H	41.82	1.31	27.48	1.59	
\mathbf{H}^- + \mathbf{H}_2^+ \rightarrow \mathbf{H} + \mathbf{H}_2	57.59	0.95	37.82	1.15	
$H^- + H_3^+ \rightarrow 2H + H_2$	102.9	0.53	67.43	0.65	
H^{-} + H \rightarrow H_2 + e	29.88	1.83	19.64	2.22	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	18.78	2.91	12.33	3.54	
\dot{H}^{-} + Cs^{+} \rightarrow Cs +	17.08	3.20	34.16	1.28	
H^- + Cs \rightarrow Cs + H + G	113.26	0.48	113.26	0.39	
$H^- + H^+$ (elastic collision)	2.26	24.16	1.47	29.70	
H ⁻ + H (charge exchange)	0.85	64.24	0.74	59.01	

Flow chart

H⁻ ion trajectories in the second chamber

Surface produced H⁻ ions

Volume produced H⁻ ions

Initial energy : 1.0 eV Birth point (x, y, z) = (0, 0, 0) cm

Initial energy : 0.5 eV Birth point (x, y, z) = (0, 0, 1.75) cm

Numerical results of H⁻ transport

(*B₀*=120G, *I_B*=4cm)

H ⁻ ions		Surface	Volume produced H ⁻ ions					
		produced	Birth point from the PG [cm]					
Co	Collisions		H ⁻ ions	0.25	0.75	1.25	1.75	
V	Vall	loss	29	54	71	77	68	
	e		20	59	117	185	346	
on	H	+	36	98	130	129	118	
ructi	H_2^+		20	41	54	56	55	
destı	H_3^+		1	9	11	11	6	
nal	H		13	54	64	88	80	
ollsio	H ₂		23	63	99	83	56	
Cc	\dot{C} Cs ⁺		88	161	242	230	203	
	Cs		10	37	49	59	43	
	Total		211	522	766	841	907	
Elasti collisi	c on	$\mathbf{H}^{\!+}$	1043	3047	3992	3992	2942	
Charge exchange H		428	1199	1678	1865	2212		
H ior	H ions reach the PG		760	424	163	82	25	
Avera above	Average energy of the above H ⁻ ions [eV]		0.69	0.46	0.42	0.44	0.49	
Extra proba	Extraction probability [%]		30.4	17.0	6.5	3.3	1.0	

H ⁻ ions Collisions		Surface	Volume produced H ⁻ ions					
		produced	Birth point from the PG [cm]					
		H ⁻ ions	0.25	0.75	1.25	1.75		
١	Vall	loss	16	31	51	53	57	
	e		13	24	65	127	258	
on	H	ł	33	83	113	127	103	
ucti	${\rm H_2}^+$		26	68	87	79	70	
destr	$\mathbf{H_{3}}^{+}$		11	31	46	33	33	
nal (Н		44	115	165	162	145	
ollsio	\mathbf{H}_2		80	186	242	257	196	
ບິ	Cs ⁺		57	55	103	99	97	
	Cs		10	28	33	36	27	
Total		274	590	854	920	929		
Elasti collisi	ic ion	\mathbf{H}^{+}	682	1494	2161	1999	1517	
Char excha	ge inge	Н	1464	3007	4416	4389	3776	
H ions reach the PG		710	379	95	27	14		
Average energy of the above H ions [eV]		0.66	0.46	0.42	0.44	0.48		
Extraction 28.4		28.4	15.2	3.8	1.1	0.6		
P=	=5r	nTor	r	(Mean	valu	e 5.2%	

P=1mTorr

(Mean value 7.0%)

Extraction probability as a function of z

(a) Effect of magnetic filter intensity

(b) Effect of hydrogen gas pressure

: Surface : Volume (with Cs) Extraction probability (%) : Volume (no Cs) Pressure (mTorr)

Pressure dependence of H⁻ (2) density

Rate equation for H⁻ in the second chamber

H-

$$N_{2[2]}n_{e[2]}\alpha_{11[2]} + \Sigma N_{2}(v'')_{[2]}n_{e[2]}\alpha_{12}(v'')_{[2]} + n_{2[2]}n_{e[2]}\alpha_{13[2]}$$

Volume production term

$$+P_{Cs}\gamma_{1}\frac{N_{1[2]}}{T_{1[2]}}\left(1-\frac{S_{f}}{S_{t[2]}}\right)+P_{Cs}\frac{n_{1[2]}}{\tau_{1[2]}}\left(1-\frac{S_{f}}{S_{t[2]}}\right)+P_{Cs}\frac{n_{2[2]}}{\tau_{2[2]}}\left(1-\frac{S_{f}}{S_{t[2]}}\right)+2P_{Cs}\frac{n_{3[2]}}{\tau_{3[2]}}\left(1-\frac{S_{f}}{S_{t[2]}}\right)$$

Surface production term

$$-n_{-[2]}(n_{e[2]}\alpha_{14[2]}+n_{fe[2]}\alpha_{f14[2]}+n_{1[2]}\alpha_{15[2]}+n_{2[2]}\alpha_{16[2]}+n_{3[2]}\alpha_{17[2]}$$

$$+ N_{1[2]}\alpha_{18[2]} + N_{2[2]}\alpha_{19[2]} + n_{Cs[2]}\alpha_{33[2]} + N_{Cs[2]}\alpha_{34[2]})$$

+ $n_{-[1]}\frac{v_{-}}{4L_{2}} - n_{-[2]}\frac{v_{-}}{4L_{2}} - \left(1 - \frac{S_{f}}{S_{t[2]}}\right)\frac{n_{-[2]}}{\tau_{-[2]}} = 0$

Procedure for estimation of extracted H⁻ ions

		Pressure [mTorr]					
		1	2	5	8	10	15
$\mathbf{H}^{(2)} \text{ ion density} \\ [\times 10^{10} \text{ cm}^{-3}]$		11.4	20.2	38.1	49.5	55.1	65.0
A rate of H	SP	73.6	73.4	74.1	74.9	75.5	76.9
formation [%]	VP	26.4	26.6	25.9	25.1	24.5	23.1
Estimated	SP	8.39	14.8	28.2	37.1	41.6	50.0
$[\times 10^{10} \text{ cm}^{-3}]$	VP	3.01	5.36	9.87	12.4	13.5	15.0
Extraction probability of	SP	30.4	29.6	28.4	27.0	26.4	24.4
H [·] ions [%]	VP	7.3	7.2	6.0	5.1	4.1	3.3
H ⁻ ions reach the PG [×10 ¹⁰ cm ⁻³]	SP	2.55	4.39	8.01	10.0	10.9	12.2
	VP	0.22	0.38	0.59	0.63	0.55	0.49
H ⁻ ions reach the PG (total) [×10 ¹⁰ cm ⁻³]		2.77	4.77	8.60	10.6	11.5	12.7
Survival factor F against the stripping loss [%]		94.2	88.8	74.3	62.2	55.2	40.9
Extracted H ^{$-$ ions from the ion source $[\times 10^{10} \text{ cm}^{-3}]$}		2.61	4.24	6.39	6.62	6.36	5.19

SP : Surface Production, VP : Volume Production

Pressure dependence of extracted H⁻ ions

Summary

(1) The probability for H⁻ ions to reach the plasma grid is estimated.

- \rightarrow For surface-produced H⁻ ions
 - The extraction probability is weakly decreased with pressure. $(24 \sim 30\%)$
- \rightarrow For volume-produced H⁻ ions

• The extraction probability is decreased markedly with the upstream distance

from the extraction grid. (~within 2cm)

- The averaged extraction probability is much lower than that for
- (2) The Kinetie energy of the extracted H⁻ ions is reduced mainly through charge exchange collisions with H and elastic collisions with H⁺.
- (3) Although the kinetic energy of surface-produced H⁻ ions is reduced due to collisions, the value is slightly higher than that of volume-produced H⁻ ions.
- (4) Extracted H⁻ current is estimated by using the present extraction probability and the result of model calculation.

Plasma parameters obtained from the model calculation (gas pressure p = 5mTorr)

n _H -	H ⁻ ion density	$3.81 \times 10^{11} \text{ cm}^{-3}$
n _e	Electron density	$1.00 \times 10^{12} \text{ cm}^{-3}$
n _H	H atom density	$5.22 \times 10^{13} \text{ cm}^{-3}$
n _{H2}	H atom density	$8.31 \times 10^{13} \text{ cm}^{-3}$
n_{H}^{+}	H ⁺ ion density	$3.73 \times 10^{11} \text{ cm}^{-3}$
$n_{\mathrm{H_2}^+}$	H ⁺ ion density	$2.71 \times 10^{11} \text{ cm}^{-3}$
$n_{\mathrm{H_3}^+}$	H ⁺ ion density	$1.52 \times 10^{11} \text{ cm}^{-3}$
n _{Cs} +	Cs ⁺ ion density	$5.85 \times 10^{11} \text{ cm}^{-3}$
n _{Cs}	Cs atom density	$4.41 \times 10^{12} \text{ cm}^{-3}$
T _e	Electron temperature	1.0 eV
T _H	H atom temperature	0.5 eV
$T_{\rm H}^{+}$	H ⁺ ion temperature	0.5 eV

Extraction probability as a function of z

(parameter is geometrical transparency)

Surface produced H⁻ ions

maguchi Univ. Plasma Lab.