

P. Franzen for the IPP NBI Team

Max-Planck-Institut für Plasmaphysik EURATOM Association Boltzmannstr. 2, D-85748 Garching

4th IAEA TM on NNBI, Padua, 2005/05/09 - 2005/05/11

ITER Neutral Beam System: Requirements and Present Status of RF source

	ITER	IPP NNBI RF-Source			-Source
	Requirement	≤ 2002	2003	2004	2005
Cal. Current Density	20 mA/cm ² D ⁻		_	15	23 mA/cm ² D ⁻
_	28 mA/cm² H⁻	15	12	26	33 mA/cm² H⁻ ❤
Extraction Voltage	9 kV	6 kV	6 kV		9 kV 🗸
Source Pressure	0.3 Pa	0.7 – 1	0.5		0.3 Pa
Electron Content (j _e /j _H -)	1	2 – 5	1 – 2		< 1 🗸
Pulse Length	3600 s	< 10 s (tech. limitations)			
Source Dimension	1.5 x 0.6 m ²	0.32 x 0.59 m ²			
Extraction Area	2000 cm ²	70 cm²			
Uniformity	± 10%	t.b.d.			

 \rightarrow BATMAN test bed

(see talks of E. Speth, H. Falter, P. McNeely)

	ITER	IPP NNBI RF-Source			
	Requirement	≤ 2002	2003	2004	2005
Cal. Current Density	20 mA/cm ² D ⁻ 28 mA/cm ² H ⁻	 15	 12	15 26	23 mA/cm ² D [−] 33 mA/cm ² H [−] ✓
Extraction Voltage	9 kV	6 kV	6 kV		9 kV 🗸
Source Pressure	0.3 Pa	0.7 – 1	0.5		0.3 Pa
Electron Content (j _e /j _H -)	1	2 – 5	1 – 2	< 1 🗸	
Pulse Length	3600 s		< 10 s	(tech. li	mitations)
Source Dimension	1.5 x 0.6 m ²	0.32 x 0.59 m ²		9 m ²	
Extraction Area	2000 cm ²	70 cm ²		2	
Uniformity	± 10%	t.b.d.		1	

 \rightarrow MANITU test bed, but only PINI size extraction (<390 cm²) (see talk of W. Kraus)

	ITER	IPP NNBI RF-Source			
	Requirement	≤ 2002	2003	2004	2005
Cal. Current Density	20 mA/cm ² D ⁻ 28 mA/cm ² H ⁻	15	 12	15 26	23 mA/cm ² D [−] 33 mA/cm ² H [−] ✓
Extraction Voltage	9 kV	6 kV	6 kV		9 kV 🗸
Source Pressure	0.3 Pa	0.7 – 1	0.5		0.3 Pa
Electron Content (j _e /j _H -)	1	2 – 5	1 – 2	< 1 🗸	
Pulse Length	3600 s		< 10 s	(tech. li	mitations)
Source Dimension	1.5 x 0.6 m ²	0.32 x 0.59 m ²		9 m²	
Extraction Area	2000 cm ²	70 cm ²		2	
Uniformity	± 10%	t.b.d.			

 \rightarrow new test bed RADI, but without large area extraction

The IPP NNBI RF Source: Principle Design

Towards ITER: '1/2 size ITER source'

1/2 size ITER source RADI Test Bed

commissioning summer 2005

1/2 size ITER source source design

- four parts:
 - ▶ rectangular source body
 - \blacktriangleright source back plate \rightarrow drivers
 - drivers
 - driver back plates
- simulation of VIBS by dished end
 - also operation in air possible for commissioning by enforced back plate
- variable source depth
 - spacers between source body and back plate
 - venting necessary
 - ▶ depth: 150 mm \rightarrow 250 mm
- diagnostic ports:
 - ▶ 40 mm ø
 - \blacktriangleright 5 axial ports at back plate \rightarrow Cs
 - \blacktriangleright 2 axial ports at driver back plate \rightarrow gas, interlocks
 - ▶ 5 vertical & 3 horizontal ports, 1 cm distance from grid
 - \rightarrow diagnostics

1/2 size ITER source source body

1/2 size ITER source Driver Configurations

4 x 24 cm ø

- standard driver
- can illuminate 150 200 cm² (MANITU)

- same back plate
- eccentric flanges
- optimization of driver position

2 x racetrack

- new back plate
- similar to AUG PNBI RF geometry
- 1 RF generator / driver

1 RF generator / 2 drivers (ITER RF design scenario)

P. Franzen

1/2 size ITER source Auxiliaries

- Cs oven
 - ▶ 2 ovens, IPP design with 3 g each
- Plasma grid heating
 - electrical heating wires, controlled
 - ▶ 150 °C 200 °C
- Bias
 - ▶ 50 V, 500 A power supply
- Filter field
 - 'PG' filter:
 - ➔ 5 kA current through PG (ITER)
 - 'Rod' filter
 - ➔ five water-cooled rods of magnets
 - ➔ similar to small sources
 - ➔ adapted to ITER grid segmentation

no extraction

 \rightarrow influence on plasma parameter !

1/2 size ITER source Filter field calculations

- magnets outside
 - no field in the center
- PG current
 - quite homogeneous across the grid
 - ► far reaching into source
- Rod filter
 - more localized at grid
 - variations across grid segments

- combination of PG currents and rods
- influence of magnets in extraction grid by dummy extraction grid

1/2 size ITER source RF circuit

Similar to ITER RF design:

- RF generator and source at same potential
- 1 RF generators supplies 2 drivers

1/2 size ITER source RF circuit

Open questions (\rightarrow ITER RF circuit design):

- distribution of the RF power into the source (FS, eddy currents in back plates, ...)
- optimum number of coil turns
- operation without transformer
 - proof of principle at MANITU
- arrangement of C₂ with the drivers ('CLL', 'LCL')
- coil insulation
 - 4.5 kVpp for 90 kW between turns (1/2 for 'LCL')
 - 27 kVpp at coil ends for 6 turn coil
- mutual influence of the matching networks and of the possible different frequencies
- other means of variable matching
 - C₂ has to be located near the source
 - $\blacktriangleright \quad \text{rather large} \rightarrow \text{problems for ITER}$
 - control of frequency $? \rightarrow$ redesign of generator

P. Franzen

15

(see talk of U. Fantz)

¹/₂ size ITER source Diagnostics

no large scale extraction

 \rightarrow no direct measure (current density, electron/ion ratio) of source performance

IPP strategy:

- diagnostic of plasma parameters
 - \rightarrow negative ion density
 - \rightarrow electron density
 - \rightarrow Cs density in the plasma
 - \rightarrow Cs coverage
 - $\rightarrow \dots$
- axial and horizontal / vertical profiles
 → uniformity
- calibrate plasma parameters to current density and electron/ion ratio at BATMAN / MANITU

1/2 size ITER source Diagnostics

(see talk of U. Fantz)

Diagnostic	Parameter	Profiles	Comments
Optical Emission Spectroscopy	n _e , T _e , n_H- , n _{Cs} , n _{H°} , Impurities	yes	already working on BATMAN, non-invasive 1 cm diameter of line of sight (optics) 2 three-channel spectrometer → tomography large ports (4 cm diameter) → axial profiles
Langmuir Probes	n _e , T _e	yes	problematic in RF environment, also installed in the plasma grid, important for spectroscopy collaboration with Charkov University
Work Function	Cs-coverage	no	in preparation white-light Hg-lamp, interference filters problems with RF noise, magnetic fields
Laser Detachment	n _H -	yes	in preparation, relative measurement
Cavity Ring Down Spectroscopy	n _H -	no	in preparation, absolute measurement
Local extraction with Faraday Cups	j _{H-}	yes	voltage too low for maximum performance

1/2 size ITER source local extraction

- max. voltage (4 5 kV) determined by distances
- perhaps to low for optimum performance, but beam profile possible

1/2 size ITER source Summary

- The IPP RF source has fulfilled or exceeded the ITER requirements regarding current density, source pressure and electron content, but for small sources
- In order to demonstrate the scalability and the modular concept of the IPP RF source, IPP is currently constructing a new test bed RADI
 - test of $\frac{1}{2}$ size ITER source \rightarrow same width, $\frac{1}{2}$ of the height
 - \blacktriangleright no large scale extraction \rightarrow performance via plasma parameter
 - test of 'ITER'-like RF circuit
 - variable design for optimisation: drivers, confinement, filter field, source depth, RF matching, ...
 - diagnostic tools for negative ion density developed / in preparation, calibration against current density under way
- commissioning summer 2005, first results October 2005
 - direct impact on full size source design / RF circuits at Padua
- mid term: large scale extraction ?
 - upgrade of test bed \rightarrow calorimeter on HV
 - more significance of results