

Spectroscopy

A Powerful Diagnostic Tool in Source Development

Ursel Fantz, IPP NBI Team

Plasma parameter

- ▶ n_e, T_e and T_{gas}
- ► H and H₂ density
- ► Cs and Cs⁺ density
- ► H⁻ density
- ► Time traces

Correlation with j_{H^-} and j_e

Stripping losses

Volume processes

Diagnostics of n_e , T_e , T_{gas} , H and H_2 , Cs and Cs⁺, H⁻ close to the grid

Optical Emission Spectroscopy (OES)

Survey spectrometer

- ▶ 200 900 nm, low resolution $\Delta\lambda \approx 1$ nm, time traces
- ► 200 780 nm, high resolution $\Delta\lambda \approx 0.3$ nm

Electron density and electron temperature using argon as diagnostic gas

Atomic and molecular hydrogen

More negative ions expected in D_2 than in H_2

|| grid, obtained from H₂ Fulcher radiation

140

Diagnostics of cesium: neutrals and singly charged ions in plasma volume

Time traces of cesium and hydrogen lines

Masked grid (20% to length of LOS)

Cs intensity parallel to grid used as monitor for cesium balance

IPP

H⁻ volume density monitored by Balmer line ratios

in observation volume

Comparison between RF and arc sources

Monitoring of cesium in the arc source

Ursel Fantz

9 – 11 May 2005

Monitoring of H^- in the arc source

IPP

Spectroscopy – A powerful diagnostic tool in source development

Diagnostics of plasma parameters n_e, T_e, T_{gas}, densities H, H₂ and impurities

H⁻ formation and destruction processes

correlations with j_e

plasma stability

Monitoring and quantification of Cs, Cs⁺ and W in plasma volume

cesium evaporation and redistribution

tungsten impurities

Novel diagnostic technique for H^- (line ratio method: H_{α}/H_{β})

correlations with j_{H⁻}

- Valuable results from time traces
- Comparison between RF and arc discharges
- Quantification of stripping losses by H_{α} beam spectroscopy

Modelling complete measurements