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Introduction

 The SINGAP accelerator design for ITER has been reviewed and
improved.

» Running larger models allowed problems in the old design from
2001 to be identified and corrected.

« The design now includes the following new features:

» Beam steering is provided by the shape of the post-acceleration
grid, which is now slightly V-shaped.

» By moving the post-acceleration grid vertically, the beams can
be steered between on-axis and off-axis heating.

» A problem has been identified with electrons producing high power on
the neutraliser.

» The talk will detail the design, discuss the expected beam optics and
the stripped electrons.
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SINGAP beam optics in a nutshell
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 The beamlets must leave the pre-accelerator convergent and with a

large diameter (a) to keep the internal space charge forces low. When
they leave the post-accelerator they must be nearly parallel (b).

 The 16 beam groups must also have the correct alignment.
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Converging Beamlets from pre-accelerator
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SLACCAD simulation: 26 mA/cm?2 D- extracted
» gaps are 3 and 20 mm,
» Voltages are 6 kV and 40 kV,
Stripping losses included
pre-accelerated beamlet:
» beamlet diameter 11.4 mm, converging by 1.3 degrees.
Using PBGUNS: need 7 kV extraction voltage.
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Extraction and pre-acceleration grids

ITER SINGAP EXTRACTION GRID AS SEEN FROM THE SOURCE
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« Water cooling.

* Magnets to
deflect electrons to
the grid surface.

« Extraction and
pre-acceleration
grid have opposite
magnet polarities.

» steering magnets
in pre-acceleration
grid.
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Electron and D- trajectories

TRACK simulation of the ITER SINGAP Pre-accelerator
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e Tracking of e, D-

* included suppresion
and filter fields

* 4% e leakage
beyond extr. grid.

* 0.02% e- leakage
beyond pre-acc. grid.

* Very peaked e-
power density on
extraction grid.
 Pmax=1000 W/cm?.

 Pmax= 600 W/cm? if
averaged over 1 mm2,

 RFX is calculating
how well the grid can
take this
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New design deflects beam groups inwards

\I/ \ 000 kV

» Horizontal section of the previous and the new SINGAP design.
» The old design deflected entire beam groups outwards.

» The new design deflects entire beam groups inwards, which is
desirable.

e This is due to:
» Replacing pre-accelerator kerbs with wells,
» Adding kerbs to the post-acceleration grid.
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SINGAP: post-acceleration grid

e To provide vertical beam
group steering, the SINGAP
post-acceleration grid
(“SINGAP grid”) is “V”-shaped.

* View, looking down the
beamline, on the “V”-shaped
ITER-SINGAP grid.

» Picture courtesy Consorzio RFX.
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SINGAP: horizontal section
ITER SINGAP horizontal section at Y=207 mm
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» Horizontal cross-section through the new SINGAP post-accelerator
taken at Y=207 mm above the accelerator midplane.
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SINGAP: vertical section
_ITER SINGAP vertical section at X=80 mm __
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 Vertical cross-section through the new SINGAP post-accelerator
taken at X=80 mm from the accelerator midplane.
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SINGAP accelerator potential
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* Through the middle of two beam groups, Y=197 mm and Y=591 mm.
« Space charge compensation assumed to start at maximum V.
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» ¥, of the system.
* The required beam group steering for ITER is indicated.
« Each point represents position and direction of 1 beamlet.
» Note the horizontal convergence of beamlets in one beam group.
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SINGAP divergence for ©11.4 mm beamlets
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« Acceleration of converging beamlets through the SINGAP accelerator
« Semi analytical calculation gives ~2.5 mrad (yellow band)
» SCALA calculates in the range 2.0 - 3.5 mrad.
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Beam Transmission to ITER
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« Assuming Gaussian beamlets, TRANSMIT calculates for 1280
beamlets how much power is seen on each rectangle of a testplane.

» Scrapers intercept power by blocking the view on some beamlets.
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“Realistic” beams

 Because a calculation is always idealised in some way (finite ion
temperature, machining tolerances, thermal expansion, lateral pressure
gradient, source non-uniformity, etc. are not included), the real
divergence is likely to be worse than calculated.

* Therefore we introduce “realistic beams”:
» The calculated divergence is increased by 2 mrad,
» A random divergence between 0 and 1 mrad is added,
» A random direction between —1 and 1 mrad is added.

* For both SINGAP and MAMuG we take a calculated 3 mrad
divergence at optimum perveance.

 “realistic’ beams then imply an optimum divergence of ~5.5 mrad.
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Transmission to ITER: SINGAP and MAMuG
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Post-accelerated D current density (mNcmz)

Variation of extracted D- current at 1 MeV.

For MAMuG, all beam steering angles are assumed to remain fixed.
For SINGAP they vary with the current.

At high current interception on the extraction grid occurs.
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Power density on neutraliser plane :
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» Electrons from stripped D- are
accelerated up to 960 keV.

e Their power is 2.7 MW.
e Also 1.0 MW in stray neutrals.

» Additional backstreaming
positives and electrons not
included.

» The filter field from the source
and stray field from ITER bends
the electron trajectories.

e Their impact causes X-rays.

e Up to 3.3 kW/cm? locally on the
neutraliser leading elements.
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« RFX and UKAEA are
calculating if all this is acceptable.
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CONCLUSIONS

* The proposed SINGAP accelerator is based on the post-acceleration
of pre-accelerated large-diameter converging beamlets. The geometry
provides the correct steering of the beamlets.

* The post-acceleration grid is V-shaped in order to deliver vertical
steering. It can be moved vertically to switch the beams between on-
axis and off-axis.

» Extracted electrons are dumped on the extraction and pre-
acceleration grids. The power density profile on the extraction grid is
very peaked.

* Megawatts of stripped electrons are expected to be dumped on the
neutraliser; they must be dealt with appropriately.

« Consorzio RFX and UKAEA are calculating the consequences of the
power deposited by the electrons.
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