Vibrational Kinetics, electron dynamics and elementary processes in H₂ and D₂ Plasmas for Negative Ion Production: Modelling Aspects

M.Capitelli^{1,2,*}, R.Celiberto^{1,4}, O.De Pascale², P.Diomede¹, F.Esposito², A.Gicquel³, C.Gorse¹, K.Hassouni³, A.Laricchiuta², S.Longo¹, D.Pagano¹, M.Rutigliano², M.Cacciatore^{1,2}

> ¹Department of Chemistry, University of Bari, Bari, Italy ²CSCP-IMIP(CNR), Sezione Territoriale di Bari, Bari, Italy ³LIMHP-CNRS, Université Paris Nord, Villetaneuse, France ⁴Politecnico di Bari, Bari, Italy

Outline

1) Open problems (1985-1995) in Multipole Magnetic Plasmas

- a) Validation of Bari code with FOM experiments
- b) Extension to D_2 plasmas
- c) Pulsed discharges
- d) Rydberg states
- d) Wall effects
- 2) Cross Section Improvements (1995-2005)
 - a) Electron-molecule cross sections
 - b) Heavy particle collision cross sections
 - c) Gas surface interaction
- 3) Kinetic models Improvements(1995-2005)
 - a) New multipole zerodimensional code
 - b) Parallel-plate 1D code
 - c) RF and MW quasi 1D code

4) <u>Conclusions</u>

Vibrational excitation and negative ion kinetics

Multipole Magnetic Plasmas

Self-consistent non equilibrium vibrational kinetics coupled to the Boltzmann equation for the electron energy distribution function

Time Evolution (heavy species)

$$\begin{pmatrix} \frac{dN_{v}}{dt} \end{pmatrix} = \left(\frac{dN_{v}}{dt}\right)_{e-V} + \left(\frac{dN_{v}}{dt}\right)_{E-V} + \left(\frac{dN_{v}}{dt}\right)_{V-V} + \left(\frac{dN_{v}}{dt}\right)_{V-T} + \left(\frac{dN_{v}}{dt}\right)_{e-D} + \left(\frac{dN_{v}}{dt}\right)_{e-I} + \left(\frac{dN_{v}}{dt}\right)_{e-da} + \left(\frac{dN_{v}}{dt}\right)_{e-E} + \left(\frac{dN_{v}}{dt}\right)_{wall} + \left(\frac{d$$

$$\frac{\partial n(\varepsilon,t)}{\partial t} = -\left(\frac{\partial J_{el}}{\partial \varepsilon}\right)_{e-M} - \left(\frac{\partial J_{el}}{\partial \varepsilon}\right)_{e-e} + In + Ion + Sup + S - L$$

 $S = \frac{I}{Ve\Delta\varepsilon_n}$ Electron source term

 $-\left(\frac{\partial J_{el}}{\partial \varepsilon}\right)_{e-M}$ Flux of electrons along energy axis due to elastic collisions

 $-\left(\frac{\partial J_{el}}{\partial \varepsilon}\right)_{e-e}$ Flux of electrons along energy axis due to electron-electron collisions

- Term due to inelastic In collisions
- *Ion* Term due to ionization collisions
- Sup Term due to superelastic collisions
- **Electron loss** L term

Validation of Bari code with the FOM experiments (Gorse et al.1992)

comparison between experimental (a) and theoretical (b) vdfs at several pressures

comparison between experimental (a) and theoretical (b) vdfs at several discharge currents I_d

Problems:

 calculations overestimate by a factor 10 the high lying vibrational levels giving satisfactory agreement with negative ion concentrations
FOM experimental vibrational distributions limited to v=5 New: experimental determination by Mosbach and Dobele up to v=13

vibrational distribution N_v measured in a H₂ multicusp source (p = 11.25 mtorr, $I_d = 0.5$ A, $V_d = 100$ V)

Extension to D₂ plasmas

Theoretical *EEDF* (a) and N_v (b) in H₂ and D₂ sources (p = 4.5 mtorr, I_d = 10 A, V_d = 115 V, plasma potential V_p = 2.9 V)

Dissociative attachment rates versus vibrational quantum number for H_2 and D_2 molecules

The behavior of electron density *ne* (a), electron temperature *Te* (b), atomic concentration [H]/[D] (c), and negative ion concentration [H⁻]/[D⁻] (d), for H₂ and D₂ systems versus pressure p ($I_d = 10$ A, $V_d = 115$ V)

The behavior of electron density *ne* (a), electron temperature *Te* (b), atomic concentration [H]/[D] (c), and negative ion concentration [H⁻]/[D⁻] (d), for H₂ and D₂ systems versus current I_d (p = 7.5 mtorr, $V_d = 115$ V) [37]

DISSOCIATIVE ATTACHMENT: $H_2 (X {}^1\Sigma_g, v) + e \rightarrow H_2^- \rightarrow H^- + H$

 $\mathbf{E} = \mathbf{4.5} \ \mathbf{eV}$

RESONANT VIBRATIONAL EXCITATION: $H_2 (X {}^{1}\Sigma_g, v_i) + e \rightarrow H_2^- \rightarrow H_2 (X {}^{1}\Sigma_g, v_f) + e$

E = 5 eV

Pulsed discharges: model

Relaxation of several quantities (*EEDF* (a), e-da rate coefficient (b), N_v (c), D-density (d)) in the D₂ post-discharge regime

Pulsed discharges: experiment

Extracted H⁻ current in a pulsed hydrogen discharge with a 2.7 ms pulse length and a 87 Hz repetition rate (p = 2.4 mtorr, $I_d = 15$ A)

Rydberg states: hystorical Scenario/1

Pinnaduwage et al. Phys. Rev. Lett. 70, 754 (1993)

 $e + H_2^* \rightarrow H + H^- K_{da}(Ryd) = 10^{-6} \text{ cm}^3/\text{sec}$

Garscadden and Nagpal Plasma Sources Sci. Technol. 4, 268 (1995)

Simplified model: (lumped excitation cross section on Rydberg states + lifetime of Rydberg states of 10^{-6} sec + K_{da} (Ryd)= 10^{-6} cm³/sec)

Result: Contribution from Rydberg states 10 times the one from vibrationally excited states

Gorse et al. AIP Conf. Proc. 380, 109 (1995)

Model: Insertion of Garscadden model in the selfconsistent kinetics in multipole magnetic plasmas Result: enhancement by a factor 2

Hiskes Appl. Phys. Lett. 69, 755 (1996)

Model: collisional radiative model for H_2^* Rydberg states +

 $K_{da}(Ryd)=10^{-6} \text{ cm}^{3/\text{sec}}$

Result: lifetime of Rydberg states of the order of 10⁻⁸sec

Consequence: contribution of Rydberg states 1%

Rydberg states: Hystorical Scenario/2

Pinnaduwage et al. Phys. Rev. A 55, 4131 (1997) $e + H_2^* = H + H^ K_{da}(Ryd)=5 \ 10^{-5} \ cm^3/sec$

Hassouni et al. Chem. Phys. Lett. 290, 502 (1998) Model: collisional radiative model for H_2^* Rydberg states + $K_{da}(Ryd)=5 \ 10^{-5} \ cm^3/sec$ Result: enhancement by factor 2.7 problem: Pudberg state from n>3

problem: Rydberg state from n>3

Pinnaduwage et al. J.Appl.Phys. 85, 7064 (1999) scaling law for Rydberg states $k_{da}(n) = 10^{-8} n^{7/2} cm^3 \cdot s^{-1}$ which corresponds to n=12 An estimation $6 \ 10^{-5} \sum_{n>12} H_2(n) = 10^{-8} \sum_{v>4} H_2(v)$

For a plateau between 10^{10} - 10^{12} cm⁻³ Rydberg concentrations of the order of $1/6 \ 10^7$ to $1/6 \ 10^9$ cm⁻³ can be of the same importance as the dissociative attachment from vibrationally excited molecules

Future Improvements

- Collisional radiative model for Rydberg states
- Scaling law for the excitation of Rydberg states
- Lifetimes of Rydberg states
- Scaling law for dissociative attachment from Rydberg states

Wall effects Historical scenario

<u>Hiskes and Karo</u>

Model: Trajectory calculations

Results: strong deactivation of vibrationally excited molecules on iron surfaces- Widely used in multicusp modelling

Billing and Cacciatore

- Model: semiclassical ; classical for describing atoms and molecules reaching the surface; quantum description of the interaction of the molecule/atom with the phononic and electronic structure of the metal
- Results : small deactivation of vibrationally excited molecules on copper surfaces

V	j	E _{kin} (eV)	P_D^{a}	v' ^{b)}	j' ^{b)}	E ^{int b,c)} (eV)
5	0	1,0	0,0	5	0,1	0,016
		2,0	0,70	5	1	0,026
6	0	0,2	0,0	6	0,1	0,0024
		0,4	0,0	6	0,1	0,0060
		0,6	0,0	6	1	0,0095
		1,0	0,62	6	1	0,014
8	0	0,05	0,0	8 (7)	0	0,001
		0,2	1,0			
10	0	0,05	0,95			
		0,1	1,0			

Dissociation Probabilities And Energy Accommodation For $H_2(v,j)$ Colliding With A Cu(100) Surface As A Function Of Vibrational And Rotational Angular Momenta v And j And Initial Kinetic Energy

^{a)} Dissociation probability.

^{b)} Averaged values for reflected trajectories.

^{c)} Energy transferred to surface phonons.

Formation of vibrationally excited states from heterogeneous atom recombination

Physi-adsorbed: practically all the recombination energy can go into vibrational excitation of desorbed molecules in both E-R and H-L mechanisms **Chemi-adsorbed:** only the difference between the dissociation energy of the diatom and the adsorption energy of atom(s) can go into vibrational energy of the desorbed molecules

Results

Vibrational distributions from physiadsorbed H and D atoms on copper (E-R mech. Billing-Cacciatore)

Vibrational distributions from chemiadsorbed H atoms on copper (HA-Shalashilin et al.) for the reaction H(gas) + Dads -->HD(v)

Vibrational distributions from physiadsorbed H atoms on graphite (E-R, H-L Sidis-Morisset)

(v, j) distribution of the H₂ product

Vibrational distributions from physiadsorbed H atoms on graphite (E-R-Billing-Cacciatore)

Cross sections improvements

ELECTRONIC EXCITATION to the lowest SINGLETS

 $X {}^{1}\Sigma_{g}(v_{i}) \rightarrow B {}^{1}\Sigma_{u}$

CROSS SECTIONS for H₂ ISOTOPIC VARIANTS

 $X \ ^{1}\Sigma_{g} (\nu_{i}) \rightarrow B \ ^{1}\Sigma_{u}$

E = 40 eV

RESONANT VIBRATIONAL EXCITATION $H_2 (X {}^{1}\Sigma_g, \nu_i) + e \rightarrow H_2^- \rightarrow H_2 (X {}^{1}\Sigma_g, \nu_f) + e$

E = 5 eV

EXCITATION of low-lying RYDBERG STATES

 $X^{1}\Sigma_{g}(v_{i}) \rightarrow B'^{1}\Sigma_{u}$

 $X {}^{1}\Sigma_{g} (v_{i}) \rightarrow D {}^{1}\Pi_{u}$

Energy (eV)

DISSOCIATION

DIRECT DISSOCIATION through EXCITED STATES

$$H_2(X^1\Sigma_g^+, v_i) + e \rightarrow H_2(b^3\Sigma_u^+, \varepsilon) + e \rightarrow H + H + e$$

$$H_2(X^1\Sigma_g^+, v_i) + e \rightarrow H_2(\text{singlets }, \varepsilon') + e \rightarrow H + H + e$$

Rate coefficients for the process: H+H₂(v,T_{rot})->3H

different translational temperatures

Rotational temperature is fixed to 500K

Deuterium dissociation rate coefficients

different translational temperatures Rotational temperature is fixed to 500K

Hydrogen vibrational excitation rate coefficients as a function of final vibrational quantum number

Hydrogen vibrational deactivation rate coefficients as a function of final vibrational quantum number

$$H_2(v = 10, T_{rot} = 500K) + H \rightarrow H_2(v = 10 - n, T_{rot} = 500K) + H$$

Hydrogen vibrational monoquantum deactivation rate coefficients

$$H_2(v, T_{rot} = 500K) + H \rightarrow H_2(v-1, T_{rot} = 500K) + H$$

Hydrogen recombination rate coefficients as a function of final vibrational quantum number

Kinetic models improvements Multipole H₂ discharges

Time dependent electron kinetics and vibrational kinetics treated at the same level

Electron energy discretization

$$n(\varepsilon,t) \approx n(\varepsilon_i,t)$$
 for $\varepsilon_i - \frac{1}{2}\Delta\varepsilon_i \le \varepsilon \le \varepsilon_i + \frac{1}{2}\Delta\varepsilon_i$

Each electron energy sub-interval

A "different electron" characterized by a representative energy ε_i (subinterval mean energy)

Electrons state-to-state kinetics

(electrons with different energies as molecular energy levels)

Discretized electron rate coefficients: $k_i^e = \sigma_i(\varepsilon)v(\varepsilon)$

VDF and EEDF for different Pressures

 $T_{g} = 500 K$

Discharge current=10 A

Discharge voltage=100 V

VDF and EEDF for different Currents

 $T_{g} = 500 K$

```
Pressure=7.5 mtorr
```

Discharge voltage=100 V

RF Discharges: Parallel Plates

1D(r)2D(v) self-consistent particle/continuum model

$p = 10mtorr, d = 36cm, V_{rf} = 300V$

RF Discharges: Inductive Coupling

Classical approach to couple heavy particle and electron kinetics

Simultaneous solution of *master equations* and

Boltzmann equation including an electric field

RF discharges (Microwave):

$$\frac{\partial n(\varepsilon,t)}{\partial t} = -\left(\frac{\partial J_{el}}{\partial \varepsilon}\right)_{field} - \left(\frac{\partial J_{el}}{\partial \varepsilon}\right)_{e-M} - \left(\frac{\partial J_{el}}{\partial \varepsilon}\right)_{e-e} + In + Ion + Sup - L$$

$$E_{rms} = \left(RFPD\frac{m_e}{n_e e^2}\right)^{1/2} \left(\int_{\varepsilon} \frac{v}{v^2 + \omega^2} f(\varepsilon) d\varepsilon\right)^{1/2}$$

RFPD: absorbed RF power density

Vibrational Temperature as a function of $\gamma_{\rm H}$: comparison with CARS measurements

Pressure= 1 torr
Injected power= 0.5 W
<i>T_w=370 K</i>

VDF and EEDF for different $\gamma_{\rm H}$

MW discharges

p= 5 mtorr, MWPD = 1.5 W/cm³ (this corresponds to 1.5 kW / 2 l discharge)

Population distribution of H-atom excited states

Vdf with very large and very populated plateau

Time evolution

Time-evolution of electron to negative ion densities

steady state relative densities of H_2 electronically excites states

Future Steps

- 1) Construction of a data base of cross sections for $\rm H_2$ and isotopes
- 2) Rydberg kinetics and gas-surface interactions
- 3) Insertion of the complete data base in 1D-2D codes
- 4) Extension to surface sources
- 5) Validation of the predictive code with dedicated experiments
- 6) Linking with the IAEA- CRP (Coordinated Research Project) on "Atomic and Molecular Data for Plasma Modelling" starting September 2005
- 7) Agreement protocol with ITER Programme