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Abstract 

Negative ion sources have since long been proposed as suitable production means of 

fast particle beams to be used in International Thermonuclear Experiment Reactor 

(ITER) as additional heating mechanisms. The numerical simulation of the particle 

production and extraction mechanisms within these sources is a valuable tool towards 

their optimisation. A challenging aspect of the problem of producing a realistic 

consistent model for the external applied fields, extracted particles and plasma 

boundary has been the large difference between the microscopic characteristic Debye 

length and the macroscopic size of the actual geometry. Therefore, a lot of work has 

been focussed on describing the extraction region over distances of the order of 

Debye sheath length. As a consequence, any macroscopical description-aimed at 

describing details over spatial scales of order of 10-2 m and larger-cannot be obtained 

within the same models by using realistic computer resources. Here, instead, a 

numerical code has been developed ex-novo by decoupling the problem: the model 

has been reduced to one of electrostatics coupled self-consistently to plasma 

dynamics, in which electric fields are both applied from the outside as well as partly 

generated by the motion of the charged particles. Non-trivial boundary conditions are 

to be supplemented, in order to describe the complicated geometry of the actual 
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sources. A realistic geometry has been used, attempting to model with quite detail the 

extraction geometry of the sources under development for the ITER injector. This 

geometry includes values of electrical and magnetic fields foreseen for the ITER 

injector. The code is designed to work in cases where the plasma density acts as a 

perturbation over the potential profiles or, equivalently, in the approximation of  very 

strong applied extracting potentials compared to the plasma potential. In this work the 

present stage of development of such a numerical code is presented. Present results 

include: an assessment of the relative effectiveness of surface production versus 

volume production for extracting negative ions; and a study of the effectiveness of a 

magnetic filter in confining electrons away from the extraction region. 
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1. Introduction 

Neutral beams from negative ion sources are expected to be one of the heating 

techniques chosen for ITER. The numerical simulation of the production and 

extraction mechanisms of negative hydrogen ions, hence, is necessary for the 

optimization of the source efficiency and as basis for the ion optics. However, 

consistent, physically correct and accurate simulations are plagued by difficulties. 

Numerically, the problem is that of solving the equations of motion for a large set of 

charged particles of several species moving within an electric field that is partially 

imposed by the outside (extraction potential) and partially generated by the charges 

themselves. All supplemented by non-trivial boundary conditions. 

The subject has already been tackled in several works. Very often, the extraction 

region is virtually identified with the sheath or pre-sheath region [1-5]. Sheath region 

is, of course, highly relevant in connection with ion surface production, and may 

effectively coincide with the whole extraction region for very low-density plasmas. In 

sources designed to deliver high-intensity beams, however, the Debye length shrinks 

to such a small value that the sheath region is, to all purposes, invisible to 

investigation: the dynamics of the extraction occurs over spatial lengths much larger 

than that. This is due both to high density and to large extraction potentials. To give 

an estimate, in BATMAN source, the electron Debye length is λD ≈ 10-5 m (plasma 

parameters are taken from fig. 3 of ref. [6]). At the same time, length scales thought to 

be relevant for extraction (e.g., extraction holes’ diameters, distances between 

electrodes, …) are of order several mm’s. BATMAN-like sources are, presently, the 

main candidates as future NBI sources in ITER. A sketch of them is given in Fig. (1). 

The region of interest for this work is the one around the grids: there are three of 

them, named Plasma Grid, Extraction Grid, Acceleration Grid along the direction 

from the plasma to the outside. They are separated by a few mm’s (Plasma Grid and 

Extraction Grid are so close together that in the figure cannot be clearly 

distinguished), and among them extraction potentials of some kV may be applied. 

Particles are extracted through holes of about 1 cm of diameter.   

In order to satisfactorily model these sources, it is necessary, hence, at least to adapt 

existing algorithms. In the following, it will be described such a code, patterned after 

the work [5]: it is a Particle-In-Cell module for plasma dynamics coupled to a Poisson 

Equation solver for potential profile.  
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FIG. 1. Schematic view of negative source.  

 

One concern with these codes is that the problem has intrinsically a large number of 

degrees of freedom, in the form of parameters that must be fed into the code from the 

outside, and that can often be known only poorly and/or partially through experiment 

[4]. Any attempt of developing a comprehensive code from scratch, therefore, can 

hardly be successful. Instead, it is more convenient to start from a very simplified 

model-both its geometry as well as the treatment of the particles inside-but still able to 

describe at least the gross features of the extraction process. 

    

2. The numerical algorithm    

An enlarged view of the basic 2-dimensional unit cell composing the grid is 

considered in Fig. (2). Uniformity is assumed along the third direction. (Holes in the 

grid, actually, do have circular shape). One must imagine a periodic array of these 

basic cells extending along x-axis. 
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FIG. 2. Basic cell for computations. The black rectangles stand for the Plasma Grid, with the 
Extraction Hole in between. Above them, there is the confined plasma, and below the 
Extraction Region. The floor of the figure stands for the Extraction Grid; the ceiling for the 
“plasma boundary” (whose precise meaning is to be better explained later). The geometric 
sizes Lx (width of the cell), LG (diameter of the hole), d (thickness of the Plasma Grid), Ly1 
(distance between Plasma Grid and Extraction Grid) are all geometric parameters known in 
advance of the computation. Ly2, instead, will be determined later.   

 

 

A simplified model for plasma dynamics will be considered, neglecting particle-

particle collisions (including ionization and recombination). Also particle-surface 

collisions will just lead to absorption of the particle: no reflection is permitted. A 

confining magnetic field (magnetic filter) is explicitly included: indeed, part of the 

simulations will address the issue of the performances of this field over particle 

confinement. Actual magnetic filters have a complicated pattern (see Fig. 1), 
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however, the present stage of refinement of the code makes pointless the detailed 

simulation of the magnetic geometry, and we just limit to a constant magnitude field, 

directed along z-axis (i.e., perpendicular to the plane in figure).   

Finally, three-components-plasmas will be considered: electrons, protons, and 

negative Hydrogen ions. The presence of doping elements, such as Caesium atoms, is 

deemed to act as a surface coating, without playing any active role in plasma 

dynamics.  

The calculation performs iteratively, solving the Poisson equation at each iteration k 
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where e δn = e (np – ne - ni ) is the local charge density imbalance between electrons 
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for each of the N particles composing the plasma.  The magnetic field B is generated 

by magnets located in the source and, partially, by the currents inside the sources. An 

order-of-magnitude estimate shows that the latter contribution is not relevant when 

external fields are several tens Gauss of larger (more details are provided in Appendix 

A). Hence, in the following, only B produced by magnets will be considered. The 

electric field E(k-1) = - ∇ϕ(k-1) comes from the Poisson equation (1). The charge 

density is proportional to the average time spent by the N test particles into each cell 

of the numerical grid spanning the whole extraction region. The right normalization 

constant, in physical units, is then obtained by imposing that, well inside the plasma, 

the density be equal to the (pre-assigned) plasma density np. Adequate convergence 

checks must be carried out: too small the number N and/or to coarse a mesh  will 

cause unphysical fluctuations in the estimation of the plasma density, leading to 

divergence of the results. 

Equation (1) must be supplemented by boundary conditions for ϕ, as well as by an 

initial guess for δn(0). This latter is chosen as: δn(0) ≡ 0 everywhere, thus Eq. (1) 

reduces to Laplace equation  for k = 1. Boundary conditions used are 

sketched in Fig. (2). Plasma Grid is chosen as the ground: ϕ

0)1(2 =∇ ϕ

PG ≡ 0. Extraction Grid is 

set to the value of the extraction potential: ϕEG ≡ ϕ(ext). A word about this: the true 

 6



potential along the Extraction Grid is not uniform because of the presence of holes in 

that grid, see Fig. (1). The holes within all of the three grids are collinear. The electric 

field along the axis of the holes is reduced with respect to when one is over the 

metallic plate, far from the holes. In the Appendix B an analytical calculation is 

provided, yielding a general expression for the electric field. For the sake of 

simplicity, however, the hypothesis of a uniform field along the x-axis is retained, to 

be considered an average value.  

Because of periodic conditions, the left- and right-hand boundary must fulfil 

0=∇ ϕn , where ∇n  is the normal derivative to the boundary, hence . xn ∂≡∇

The upper boundary is chosen deeply enough inside the plasma, that the externally 

applied electric field be completely shielded. In actual computations 0=∂ ϕy  as the 

boundary condition was used. The x-derivative, of course, is not exactly zero because 

of the perturbing effect over the spatial uniformity exerted by the hole. However, by 

increasing the distance from the Plasma Grid, i.e., choosing larger and larger Ly2 , this 

lack of uniformity may be reduced as much as one wishes. Therefore, Ly2 is set by the 

criterion that, along the upper boundary, ϕ be constant to within a small tolerance. 

This choice for the boundary condition implicitly sets the plasma potential: since 

0→∇ϕ ( y → ∞), then ϕPlasma ≡ ϕ(y = ∞). It is clear that this value is directly 

proportional to the extraction potential: ϕPlasma ∝ ϕ(ext). However, in the real case, the 

plasma potential is to be partially determined by plasma interactions with the 

boundaries, too. Indeed, these latter should become negligible in the limiting of huge 

extraction potential, ϕ(ext) → ∞, and/or large hole width, LG → ∞.  

One has still to provide starting conditions for Eq. (2). Electrons and protons were 

placed uniformly along x on top of the cell, y = Ly1 + d + Ly2 , with velocity U directed 

along the negative y direction. Negative ions, instead, are generated very close to the 

grid. In the future, the possibility for negative ions to travel longer distances through 

scattering with other particles will be implemented. 

 

3. Numerical results             

3.1 Electrostatic potential, electrons and positive ions 

A first test run is shown in Fig. (3): the starting potential profile ϕ(1); electrons and 

protons trajectories within this potential; the second-iterate potential ϕ(2). Parameters 

were: core plasma density np = 1017 m-3 , extraction potential ϕ(ext) = 10 kV. Magnetic 
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field is absent and no negative ions were considered. Geometric parameters are: Ly1 = 

4.5 mm , Lx = 21 mm , LG = 14 mm , d = 2 mm . The Grid-plasma distance Ly2 was set 

to Ly2  = 40 mm, insuring a constancy of ϕ along the upper boundary: ϕPlasma = 

0.36×ϕ(ext) to within a tolerance of about 1%, and 

)/(105|| 21
(ext)2

yyy LdL ++××≈∂ − ϕϕ , but in the figures only the first 2 cm from 

the grid into the plasma have been plotted. Fig. (4) features ϕ versus y, evaluated in 

the middle of the cell ( x/d = 5). The kinetic energy of the particles was taken equal to 

the plasma potential at the plasma boundary. It is worth noticing that Ly2 may be given 

the meaning of extraction depth: that is, the typical scale length over which the 

plasma goes from its core value (np) to edge value (about zero). This value may be 

estimated by direct measurements. The extraction depth, for high applied potentials 

(i.e., some kV) is, actually, a few centimeters [8], providing a (qualitative) 

confirmation to our model.    

For this set of parameters, the contour plots for ϕ(1), ϕ(2) do appear almost identical.  

FIG. 3. Top-left: starting potential ϕ(1); top-right: electron trajectories; bottom-left: proton 
trajectories; bottom-right: first-iterate potential  ϕ(2). Geometric, plasma and external potential 
parameters are given in the main text. 
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FIG. 4. Solid line, starting potential ϕ(1) evaluated in the middle of the cell versus y 
coordinate; dashed line, ϕ(2). 
 

Eq. (1) may be made dimensionless: one may write (omitting the index k), 
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where L is a typical size of the system. It is clear from Eq. (3) that the potential profile 

is dependent only upon the ratio r = np/ϕ(ext) (provided that the geometry of the source 

is left untouched), and not on variations for np, ϕ(ext) individually. In Fig. (3) one is 

exploring the case r ≈ 0: the starting guess is expected to be the closer to the true 

solution, the smaller the ratio r. In Fig. (5) the same setup is considered, but for the 

extraction potential ϕ(ext) reduced by a tenfold factor (i.e., r increased by the same 

factor). Some differences between ϕ(1), ϕ(2)  are now  apparent, but on the whole it is 

evident that the “vacuum solution” is still a rather good estimate for the electrostatic 

problem. The high-ϕ(2) potential “triangular” region appearing in the middle of the 

cell (right-bottom panel) is due to the high electron charge density bunching there (see 

right-top panel). A scan at lower density or higher potential would yield essentially 

back the zero-density case of Fig. (3). The opposite scan, at higher density or lower 
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applied potential, on the other hand, is difficult to be carried out since makes the 

convergence of the series (1) hard to achieve: roughly speaking, there is no guarantee 

of convergence once the dimensionless parameter becomes appreciably 

greater than unity. 

rLe 2
0 )/( ε

 
FIG. 5. Top-left: starting potential ϕ(1); top-right: electron trajectories; bottom-left: proton 
trajectories; bottom-right: first-iterate potential  ϕ(2). Geometric, plasma and external potential 
parameters are given in the main text. Plasma parameters are the same as for figure 3 (see 
main text), but for extraction potential reduced by a tenfold factor.  
 

3.2 Magnetic field 

The magnetic filter is now added: a constant field of magnitude |B| = 50 Gauss along 

the z-axis. The presence of the magnetic field introduces a new length scale: the 

Larmor radius ρL. Figs. (6a, 6b) display electrons’ trajectories for this system. The 

two cases differ but for the initial kinetic energy: in the former case it is chosen small, 

so that ρL/Ly2 < 1; in the second case, ρL/Ly2 > 1, i.e., electrons can reach and cross the 

Plasma Grid. Recall that particles are considered collisionless, hence there are not 

mechanisms available to shift them from their starting position more than one ρL 

along the y direction. A more realistic picture, including both particle-particle 

collisions and the thermal distribution of kinetic energy, should somewhat smear the 

sharp boundary out: notice, however, that a direct calculation of the mean free path 
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for elastic Coulomb collisions shows that it is rather longer than the length scales here 

considered. It is apparent, in Fig. (6b), the E×B drift that moves electrons rightward 

(right-top panel). The results shown in Fig. (6) point to an issue that may have 

practical relevance. Indeed, in typical experimental conditions, the electron current 

accounts for about 50% (or more) of the total outgoing current [7]. It would be 

desirable to further reduce the electron density toward the grid, similarly to results [5], 

for further source optimization.  

 

 
FIG. 6a. Top-left: starting potential ϕ(1); top-right: electron trajectories; bottom-left: proton 
trajectories; bottom-right: first-iterate potential  ϕ(2). Geometric, plasma and external potential 
parameters are given in the main text. Magnetic field is added. Electrons are effectively 
shielded above y = 8. 
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FIG. 6b. Top-left: starting potential ϕ(1); top-right: electron trajectories; bottom-left: proton 
trajectories; bottom-right: first-iterate potential  ϕ(2). Geometric, plasma and external potential 
parameters are given in the main text. Magnetic field is added. With respect to Fig. (6a), 
initial kinetic energy of particles is increased threefold. 
 

The effect of the magnetic filter over electron extraction efficiency was therefore 

studied with some detail. In Fig. (7), left panel, it is displayed the fraction f of 

electrons escaping the source versus applied magnetic field, at different kinetic 

energies U. For each energy there is a threshold field B0, above which electrons are 

perfectly confined. It is easy to relate this field with electron energy and with initial 

electron location: the initial electron-grid distance L must be larger than Larmor 

radius ρ: L =  ρ → B0 ∝  U1/2. The right-hand panel of Fig. (7) confirms this scaling. It 

may be interesting to notice that, even in the zero-magnetic-field situation, when 

increasing U, the fraction of escaping electrons decreases, albeit slightly. The reason 

is that, the greater its velocity, the lesser the electron remains sticked to electric field 

line. Hence, a fraction of the electrons collide with the grid even though no field line 

is actually intersecting it.  
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FIG. 7. Left panel: fraction f of electrons escaping from the source versus applied magnetic 
field. Red symbols, kinetic energy U is a quarter of the plasma potential, U/Up = ¼. Blue 
symbols,  U/Up = 1. Black symbols, U/Up = 3. Green symbols, U/Up = 4. Each set of points 
has been interpolated with a tanh curve (solid curves), and the location of the threshold field 
was recovered. Right panel, threshold field versus electron velocity. The linear scaling is 
obeyed perfectly.  
 

 

3.3 Negative ions 

Negative ions represent eventually the main subject of this work. Fig. (8a) displays H- 

trajectories under conditions that should be representative of two different generation 

mechanisms. In all cases, negative ions were considered to be very small in number, 

hence they act as test particles and do not appreciably perturb the potential profile. (It 

is known not to be true in all experimental situations). In one case, particles with zero 

kinetic energy are initialized on the surface of the Plasma Grid. This is a simplified 

scheme for pure surface production. In the other case, instead, particles are  still 

initialized at a small distance from the Plasma Grid, but allowing them to be 

generated even in correspondence of the hole, in an attempt of simulating of volume 

production. The true dominating production mechanism is still a matter of debate, and 

is likely to be a mixture of the two, with relative weights that may change from one 

source to another. There is not, hence, evidence to favour one over the other. It is 

remarkable, however, that the present results hint that surface production should be 

very sensitive to geometric details of plasma grid, since only ions generated very 

close to the hole have some chance to escape. Of course, these figures do not take into 
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account the relative probabilities of producing an ion on the surface or within the 

plasma, hence are not truly representative of the actual relative production efficiences.  

However, it is remarkable that, within the limitations of this code, no negative ion 

may be extracted provided its birth place is on the grid facing the plasma, no matter 

its starting velocity or extractic electric field. The reason is that, just on the grid, the 

electric field is such to accelerate a negatively charged particle right into the plasma. 

A larger initial velocity or larger electric field corresponds just to accelerating faster 

the particle, without altering its direction. (This statement was checked against actual 

simulations).On the contrary, the starting position is crucial. A first test is given by 

the “volume production” (Fig. 8a, left panel). Another one is provided in fig. (8b): this 

is still “surface production” but, here, ions are generated on the vertical face of the 

grid, a place where the electric field acts to extract negative particles. 

 
FIG. 8a. Examples of trajectories of H- ions. Left: leaving from the Grid Surface; right: 
produced into the plasma 
 

 
FIG. 8b. H- ions are now generated on the vertical face of the grid. 
 

A critical issue for any consideration about actual negative ions behaviour, is their 

mean free path λmfp. In order for the trajectories displayed in Figs. (8) to have physical 
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meaning, it is necessary λmfp to be order 1 cm at least. While this requirement is 

usually fulfilled as far as ionization/dissociation processes are involved, there is a 

large uncertainty related to elastic scattering through charge exchange processes, due 

to the large magnitude of the corresponding cross-section as well as to the large 

density of neutral particles.    

 

4. Concluding remarks 

The work presented in this paper is a first attempt of modelling a “realistic” high-

intensity negative ion source, where the sheath theory alone is insufficient to represent 

the underlying physics, which is dominated by the pre-sheath region (meaning that 

substantial variations of potential and density take place there).  

At this stage the interest was mainly in performing a sort of test of feasibility, i.e., to 

show that the code appears to run correctly over common situations. However, at the 

same time, we were able to produce some scenarios that are of interest to 

experimental analysis and that, to our knowledge have not yet been addressed   

 

Appendix A 

In the sheath and presheath region the charge unbalance δn and drift velocity E×B/B2 

produce currents J which modify B. With the geometry of Fig. 2, we here assume for 

the sake of simplicity B along z and δn different from 0 in a strip 0 < y < Y (with y = 0 

on the grid), where it is constant; E is along y (1D model). 

Within the drift approximation 

B
EneJ δ=      (A1) 

Ampere law gives 

    J
y
B

0µ=
∂
∂      (A2) 

and Gauss law is 

    
0ε
δne

y
E
=

∂
∂      (A3) 

with the boundary condition E = 0 at y = Y (inside the plasma). In the same location, 

the magnetic field takes its unperturbed value B = B0, too. Then, putting together 

(A1,A2,A3), yields 

 

 15



    )()(2 2

0

0
2

Yyne
y

B
−=

∂
∂ δ

ε
µ

   (A4) 

Solving (A4) leads to 
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By taking B0 = 10 Gauss, Y = 1 mm, δn = 1016 m-3, one finds Ω2 ≤ 1/4 , and ∆B/B0 ≤ 

1/8. 

      
Appendix B 

The two grids are first supposed to be two plates without holes, extending indefinitely 

along x and z axes. Hence, one may model the region between the two grids as a plane 

capacitor. The surface charge density on the plates of such a capacitor would be 

10 / yLV∆±= εσ , with ∆V difference of potential between the two plates.  

Let us now introduce holes in the Extraction Grid. For the sake of simplicity, just one 

hole is considered: the real multiple-holes case may be easily handled. In 

correspondence of the hole, surface charge density must vanish. Hence, the hole is 

modelled as a cylinder with radius a and with a surface charge density EGHole σσ −= . 

The potential produced by the cylinder, VHole, may be found in textbooks on 

electrostatics [9]: 
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where  y = 0 at the Extraction Grid, and EA = ∆V/Ly1. 

This expression is greatly simplified for R = 0, i.e., along the axis of the hole, that is 

the region one is most interested in:  
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This field must be subtracted off from the capacitor field. 
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