

Government of India BHABHA ATOMIC RESEARCH CENTRE Beam Technology Development Group Accelerator & Pulse Power Division Mumbai-400085- INDIA

High Power Pulsed Electron Accelerators Development for Industrial Applications

Dr. Archana Sharma

Email : arsharma@apsara.barc.ernet.in

- Expertise of BARC in Pulsed Accelerators
- PRESENT STATUS OF KALI-5000 SYSTEM (0.8-1 MV, 80 kA, 60 ns)
 - > 1.5 MV, 25kJ MARX GENERATOR
 - > 1MV, 5kJ, 100ns CASTOR OIL BLUMLEIN
 - > 1 MV SF₆ SPARKGAP SWITCH
- GENERATION OF INTENSE RELATIVISTIC ELECTRON BEAMS (REB)
- UTILIZATION OF REB for Flash X-Rays, HPM & Neutrons.

BARC's EXPERTISE

10000 1000 Since 1970s, KALI-75 **Pulse Power Systems have been KALI-200** 100 Indigenously Developed by APPD, BARC KALI-1k KALI-5k 10 *KALI-75, 375kV, 2kA, 180ns; *KALI-85, 780kV, 4kA, 60ns; 1970-1980-1990-2000-*KALI-200, 300kV, 15kA, 60ns; *KALI-1000, 300kV, 20kA, 100ns,

*KALI-5000, tested up to 600kV, 40 GW, 100ns,

LIA-200, 200kV, 5kA, 100ns, 10-100Hz under commissioning

To make the system compact and repetitive, Consistent efforts are being made.

* KALI: Kilo- Ampere Linear Injector

Photograph of the KALI-5000 PULSED Accelerator (0.8-1MV, 80kA, 100ns, 5kJ)

KALI-5000 SYSTEM (0.8-1MV, 40kA, 100ns, 40GW)

A) WHIECHARGING:

PHOTOGRAPH OF THE FIRST MARX MODULE (END VIEW)

Photograph of the Assembled Marx Modules

DESIGN EQUATIONS OF PFN MODULE

- Characteristics Impedance, $Z_{OM} = (L/C)^{1/2}$
- Pulse, $T_{OM} = 2n (LC)^{1/2}$
- Rise Time, t_r = 0.3 (LC)^{1/2}
- > Energy, $E_M = \frac{1}{2} nC (V_C)^2$
 - Output Voltage, V_{OM} = ½ V_C

HPM weapons offer military commanders the option of:

- (i) Speed-of-light, all-weather attack of enemy electronic systems
- (ii) Area coverage of multiple targets with minimal prior information on threat characteristics
- (iii) Surgical strike (damage, disrupt, degrade) at selected levels of combat
- (iv) Minimum collateral damage in politically sensitive environments
- (v) Simplified pointing and tracking
- (vi) Low operating costs

MAGNETIC FIELD

COILS

VACÚUM

SLOW WAVE STRUCTURE

ÝACÙUM

WINDOW

Beam Plasma Device

For HPM generation

X-RAY

FLASH PROFILE

SECTION AT-YY'

For a successful dynamic radiography,

PULSE POWER SYSTEM

- (i) If higher the velocity of the moving object, smaller duration of the X-ray flash will be needed.
- (ii) Blurr produced on the stop motion radiography = VxT for an object moving with velocity 'V' & X-ray pulse duration 'T'

APPLICATIONs of FXR:

(i) Radiography of radioactive sources: 8Ci Ir-192 source radiographed (KALI-200)

- (ii) Imaging the impact of projectile in or on a target,
- (iii) Imaging an explosively driven object during acceleration
- (iv) Observing the mechanics of detonation

Flash X-ray from KALI-75

Normal X- ray Photograph of water drops

<u>Collective Ion Acceleraion</u>

AN ELECTRON BEAM OF 600kV, 70kA, 100ns has been produced.

>HPM ~1GW POWER, for shielding applications.

 FLASH X-RAYs for deeper & faster radiography
ION IMPLANTATION for various Industrial Applications

THANK YOU