ALMERA (Analytical Laboratories for the Monitoring of Environmental Radioactivity) is a world-wide network of analytical laboratories, established by the IAEA, which could provide radioanalytical data that would be accepted internationally in support of the Agency’s activities in the field of radiation protection and radiological assessment of areas affected by accidental or intentional release of radioactivity. Without standard procedures and a common understanding, responses to radiological emergencies may differ markedly from country to country, and it may be difficult for countries to interpret and use each other’s data. The resulting confusion and public mistrust could hamper recovery operations and catalyse severe socio-economic and political consequences. In addition there is an ever-increasing need for rapid and accurate analytical methods to assess radionuclides levels in environmental samples for emergency preparedness reasons.

It is not easy to develop recommended analytical procedures that all laboratories can accept, as a large number of various analytical procedures have been developed and published by many scientists and analytical procedures are being continually improved with upgrading of the instruments and materials for measurement of radionuclides. Understandably, most laboratories prefer to retain analytical procedures which they have used for a long time and which have been proved to be reliable, unless there is a strong reason to make a change.

Preparation of a spiked milk powder reference material
However, one of the most frequent requests which Member State laboratories make of the Chemistry Unit, Seibersdorf is that for recommended analytical procedures. Some laboratories that are undertaking a type of analysis which is new for them would like a reliable source of procedures, so that they do not have to ‘reinvent the wheel’. They would like a readily-available reference which they can quote. If possible, they would like to have procedures available that are used at a large number of laboratories and therefore could be regarded as having been widely tested. In some cases, for example for sample collection, the final result may be strongly dependent on the method used, and use of a widely-accepted method may be important to assure comparability of results between different laboratories.

One important source of such information to date has been the IAEA Technical Reports Series No. 295 [1]. However, this guidebook is now 17 years old and so the information has become somewhat dated. Some other publications have addressed various aspects, for example quantifying uncertainty in nuclear analytical measurements [2] but a consistent and more complete set of procedures would be desirable.

Therefore, since 2004 the IAEA’s programme related to the terrestrial environment has included activities aimed towards the development of a set of procedures for determination of radionuclides in environmental samples. It is intended that as these are developed, they will be made available to users, for example by publication in IAEA series and/or by placing them on the IAEA website. The latter option would allow those who are interested in a reliable source of procedures to search for them according to their requirements e.g. by analyte and/or sample type. It is not intended that the analytical procedures included should be regarded as ‘recommended’ or ‘endorsed’ by the IAEA for any particular purpose, nevertheless it is expected that the information will be a useful resource and starting point for analysts.

The approach being taken for development of specific procedures and methods is to first review the literature on a given topic, and then based on this review develop a method written in accordance with ISO guidelines. The activities mentioned above are meant to be of general use to a wide range of laboratories. In parallel, a set of procedures and methods needs to be developed for the ALMERA network of laboratories.

The activity started with the publication of review papers on the development and validation of an analytical method for 210Po in water [3], and a rapid method for Pu isotopes and 241Am in soil and sediment. The procedure for 210Po introduces two alternative procedures using (a) DDTC solvent extraction and (b) Sr-resin extraction chromatography and the validation result of the procedure in terms of trueness, repeatability and reproducibility with water samples spiked with a known amount of 210Po.

The procedure for the rapid determination of Pu isotopes and 241Am in soil and sediment by alpha-particle spectrometry provides accurate and reliable results for the activity concentrations of elevated levels of 239,240Pu, 238Pu and 241Am in soil and sediment samples over the course of twenty four hours.

In addition to these activities, a rapid method for 89Sr/90Sr in milk is being developed. Milk, an essential constituent of the human diet, is an important indicator of the transfer of radionuclides from the environment to humans. The analysis time is an important economic factor, rapidly identifying whether milk is contaminated with radioactive materials and whether the decision maker should take protection and intervention actions for protecting the public from radiation hazards. The analytical determination of radiostrontium is not an easy task as 89Sr, 90Sr and its daughter 90Y are pure beta emitters, and prior to measurement they must be separated from the sample. To overcome this difficulty, the development of a rapid method of 89Sr and 90Sr in milk was proposed in 2007 by the Asia-Pacific ALMERA Regional Group. The IAEA reviewed relevant papers and three candidate procedures were selected. Five laboratories from the Asia-Pacific ALMERA regional group, together with the Hungarian Agricultural Authority (HAA, an IAEA Collaborating Centre) and the IAEA laboratories in Seibersdorf, validated these candidate procedures and selected the most promising in terms of chemical recovery, accuracy and precision. On this basis a pilot study was organized by the IAEA to verify the selected recommended procedure with four kinds of spiked milk powders with different activities. Twelve ALMERA laboratories from Europe, Asia-Pacific and Latin America regions have participated in the pilot study. The pilot study will conclude at the end of 2009.

In addition review papers will published in 2010 related to analytical procedures for 228Ra and 226Ra determination in water, and the methodology for indoor radon surveys.

References
The new IAEA-372 grass certified reference material for 40K and 137Cs

A new grass certified reference material characterized for 137Cs and 40K has been issued by the Reference Material Group of the IAEA Laboratories in Seibersdorf (Austria). Characterization of this material was conducted by a group of National Metrological Institutes and expert laboratories within the frame of a supplementary comparison exercise in the frame of the Mutual Recognition Arrangement of the International Committee for Weights and Measures, Consultative Committee for Ionizing Radiation, Section II - Measurement of Radionuclides.

The assignment of the property values of the reference material and the associated uncertainties were provided through the application to the measurement results of the probability density function [1]. The property values of 40K and 137Cs in grass were certified with relatively small uncertainties. The highest possible metrological traceability was achieved.

The CRM is supplied in 100g units. It is recommended to users to use a minimum of 5 g for analysis. Analysts are reminded to take appropriate safety precautions in order to avoid spread of the material during handling. This CRM can be used for quality assurance/quality control of the analysis of radionuclides in vegetation, for the development and validation of analytical work and for training purposes with two certified values (40K, 137Cs).

The material is available for laboratories by contacting the Reference Materials Group at the Chemistry Unit, Seibersdorf laboratories.

References

Advisory Group on the production and characterization of reference materials of terrestrial origin

In following the latest developments in standardization and metrology area and to address all requirements of the ISO Guides 34 [1] and 35 [2], the Agency’s Laboratories in Seibersdorf, Austria, have established a multi-institutional Advisory Group on the production and characterization of reference materials of terrestrial origin. This Advisory Group should create an integral part of the organizational structure related to IAEA reference materials of terrestrial origin. It should elaborate all aspects of the production and characterization reference materials of terrestrial origin. The Advisory Group should meet on annual basis and directly collaborate with the Chemistry Unit of the Physics, Chemistry and Instrumentation Laboratory on the following issues:

- Identification of needs and technical requirements for new reference materials;
- Identification of studies related to reference materials and common projects;
- Production of new matrix reference materials of terrestrial origins. Arrangement should be made to allow for sharing the produced reference material within the frame of this collaboration;
- Characterization of matrix reference materials of terrestrial origins;
- Review characterization procedures as well as procedures for assigning values to new reference materials of terrestrial origin;
- Review of certification reports of reference materials of terrestrial origin;
- Organization of interlaboratory comparisons;
- Review of interlaboratory comparison reports;
- Preparation of quality documentation, such as Standard Operating Procedures (SOPs) and instructions;
- Drafting documents related to the technical part of the quality system;
- Exchanging of expertise and know-how;
- Publications of scientific papers in scientific journals.

Current members of the Advisory Group on the production and characterization of reference materials of terrestrial origin are:

- Mr. Rafaat Al Merey, Atomic Energy Commission of Syria (AECS);
- Ms. Maria Belli, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Italy;
- Mr. Almir Faria Clain, Instituto de Radioproteção e Dosimetria-Comissão Nacional de Energia Nuclear, (IRD-CNEN), Brazil;
- Mr. Yongjae Kim, Korea Institute of Nuclear Safety (KINS), the Republic of Korea;
- Mr. Matjaz Korun, Institute Jožef Stefan (IJS), Slovenia;
- Ms. Rosella Rusconi, ARPA Lombardia, Italy;
- Mr. Sándor Tarjan, Hungarian Agricultural Authority (HAA), Hungary;
- The Section Head of the Physics, Chemistry and Instrumentation Laboratory;
- The Head of the Chemistry Unit of the Physics, Chemistry and Instrumentation Laboratory;
- The Reference Material Group leader of the Chemistry Unit of the Physics, Chemistry and Instrumentation Laboratory;
- The Quality Systems Manager of the Agency’s Laboratories in Seibersdorf and Headquarters.

References

ALMERA COORDINATION MEETINGS

Minutes of the 2009 ALMERA Asia-Pacific Regional Coordination Meeting, Daejeon, Republic of Korea

The ALMERA Asia-Pacific regional meeting took place in Daejeon, the Republic of Korea, from 20 to 22 April 2009 and was hosted by the Korea Institute of Nuclear Safety (KINS). The meeting took place in the frame of the 20th anniversary workshop between KINS (Korea Institute of Nuclear Safety) and JCAC (Japan Chemical Analysis Centre) on the measurement of environmental radioactivity and in connection also with the IAEA seminar on uptake of radionuclides into staple crops in the Asian region organized in Daejeon, in collaboration with the Korea Atomic Energy Research Institute (KAERI), on 16 and 17 April 2009.

The meeting was officially opened by Mr. Byung Soo Lee, the Director of Emergency Preparedness & Environment Division of KINS and by Ms. Gabriele Voigt, Director of IAEA’s Laboratories, Seibersdorf and Headquarter, Austria. In this occasion Ms. Voigt gave a special lecture on the future trend of the IAEA environmental programme and delivered an official plaque to KINS in recognition of its role as coordinating centre of the ALMERA Asia-Pacific group.

Ms. Gabriele Voigt, Director of the Agency’s Seibersdorf Laboratories, hands the IAEA plaque to Mr. Byung Soo Lee, Director of Emergency Preparedness & Environment Division of KINS.
The meeting was attended by the following participants from 10 countries, representing 28 different institutions:

IAEA
- Gabriele Voigt IAEA, Seibersdorf Laboratories, Austria
- Umberto Sansone IAEA, Seibersdorf Laboratories, Austria
- Chang Kyu Kim IAEA, Seibersdorf Laboratories, Austria

Australia
- Atun Warliah Zawadzki Australian Nuclear Science and Technology Organization (ANSTO)
- Sandra Sdraulig Australian Radiation Protection and Nuclear Safety Agency (ARPANSA)

Brazil
- Ana Cristina de Melo Ferreira Instituto de Radioprotecao Dosimetria (IRD)

China
- Yong Li Chinese Academy of Agricultural Sciences (CAAS)

Hungary
- Sandor Tarjan Hungarian Agricultural Authority (HAA)

India
- Devender Rao Deverneni Health Physics Division, B.A.R.C.

Indonesia
- Dadong Iskandar National Nuclear Energy Agency

Japan
- Kaneaki Sato Japan Chemical Analysis Center (JCAC)
- Tetsuya Sanada Japan Chemical Analysis Center (JCAC)
- Shigeru Bamba Japan Chemical Analysis Center (JCAC)

New Zealand
- Jean Gary Decaillon National Radiation Laboratory

Pakistan
- Pervere Akhter Pakistan Institute of Nuclear Science and Technology

Korea (Republic of)
- Byung Soo Lee Korea Institute of Nuclear Safety
- Ju-Yong Yun Korea Institute of Nuclear Safety
- Jung Whan Row Korea Institute of Nuclear Safety
- Sang-Kuk Lee Korea Institute of Nuclear Safety
- Seok-Won Choi Korea Institute of Nuclear Safety
- Yong Jae Kim Korea Institute of Nuclear Safety
- Sangmyeon Ahn Korea Institute of Nuclear Safety
- Seong A Yim Korea Institute of Nuclear Safety
- Ji Yon Lee Korea Institute of Nuclear Safety
- Jung-Seok Chae Korea Institute of Nuclear Safety
- Dong-Myung Lee Korea Institute of Nuclear Safety
- Byung-Uck Chang Korea Institute of Nuclear Safety
- Won-Jong Park Korea Institute of Nuclear Safety
- Hong Mo Park Korea Institute of Nuclear Safety
- Kil-Woo Lee Korea Institute of Nuclear Safety
- Hee-Yeoul Choi Korea Institute of Nuclear Safety
- Chang-Su Park Korea Institute of Nuclear Safety
- Byoung-Jik Kim Korea Institute of Nuclear Safety
- Suk-Gun Kwon Korea Institute of Nuclear Safety
- Sang-Hun Park Korea Institute of Nuclear Safety
- Won-Yong Kwon Korea Institute of Nuclear Safety
- Sung-Jae Han Korea Institute of Nuclear Safety
- Sung-Myeong Woo Korea Institute of Nuclear Safety
- Gun-Sun Auh Korea Institute of Nuclear Safety
- Jong In Byun Korea Institute of Nuclear Safety
- Mi-Suk Song Korea Institute of Nuclear Safety
- Seok-Won Yoon Korea Institute of Nuclear Safety
- Dong-Hye Heo Korea Institute of Nuclear Safety
- Hwa Yong Lee Korea Institute of Nuclear Safety
- Myunghan Song Korea Institute of Nuclear Safety
- Jiyeon Kwak Korea Institute of Nuclear Safety
- Minju Yang Korea Institute of Nuclear Safety
- Youngeun Kwon Korea Institute of Nuclear Safety
- Jaiki Lee Hanyang University
- Gi-Nam Kim Korea Hydro and Nuclear Power Co.
- Young-Sik Jang Korea Hydro and Nuclear Power Co.
- Yun-Seong Jung Korea Hydro and Nuclear Power Co.
- Duk-Ho Yoon Korea Hydro and Nuclear Power Co.
- Jung-Gun Yoon Korea Hydro and Nuclear Power Co.
Objectives of the meeting
The overall aim of the meeting was:

• to discuss the implementation of the current activities of the ALMERA Asia-Pacific group;
• and to define the future activities of the ALMERA network.

Current activities of the ALMERA Asia-Pacific group
Mr. Chang Kyu Kim presented the current status of the development of a rapid method for the determination of ^{89}Sr and ^{90}Sr in milk samples and it was agreed to perform a pilot study for the validation of the method using milk powder spiked with known activity of ^{89}Sr and ^{90}Sr.
KINS, KAERI, ANSTO, ARPANSA, NRL CNEN-IRD, BARC and JCAC will participate in the pilot study for the validation of the method. 4 different samples of spiked milk powders will be used as reported in the following table:

<table>
<thead>
<tr>
<th>No.</th>
<th>Samples</th>
<th>Sample weight</th>
<th>Replicates of analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spiked milk powder with 90Sr</td>
<td>500 g/lab</td>
<td>5*</td>
</tr>
<tr>
<td>2</td>
<td>Spiked milk powder with 89Sr</td>
<td>500 g/lab</td>
<td>5*</td>
</tr>
<tr>
<td>3</td>
<td>Spiked milk powder with 89Sr and 90Sr with different activity ratio of 89Sr/90Sr (1-5)</td>
<td>500 g/lab</td>
<td>5*</td>
</tr>
<tr>
<td>4</td>
<td>Spiked milk powder with 89Sr and 90Sr with different activity ratio of 89Sr/90Sr (10 – 15)</td>
<td>500 g/lab</td>
<td>5*</td>
</tr>
<tr>
<td>5</td>
<td>Blank</td>
<td>400 g /lab</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>90Sr standard solution</td>
<td>5 mL/ampoule</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>89Sr standard solution</td>
<td>5 mL/ampoule</td>
<td></td>
</tr>
</tbody>
</table>

* Triplicate measurements for the rapid method proposed by IAEA and duplicate measurements for the own method.

Table 1. Composition of pilot study samples for the validation of the rapid method for determination of $^{89+90}$Sr in milk sample

The work plan for the validation of the method, reported in Table 2, was proposed and agreed between the participants.

<table>
<thead>
<tr>
<th>Period</th>
<th>Work scope</th>
<th>Institute</th>
</tr>
</thead>
</table>
| January–April 2009 | Preparation of spiked milk powders
- blank
- milk powder spiked with 89Sr
- milk powder spiked with 90Sr
- milk powder spiked with 89Sr and 90Sr (89Sr/90Sr ratio ; 1 ~ 5)
- milk powder spiked with 89Sr and 90Sr (89Sr/90Sr ratio ; 10 ~ 15)
- Improve accuracy of results at over 10 of 89Sr/90Sr ratios using Cerenkov and scintillation counting. | IAEA/Hungary |
| 20 April 2009 | Test of the rapid method using real milk spiked with 90Sr | all |
| 1 May 2009 | ALMERA Asia-Pacific regional meeting
- Presentation and discussion about test results of proposed method | IAEA/Hungary |
| 30 June 2009 | Distribution of thee 4 spiked milk powders and 1 blank to the institution participating in the validation of the method | all |
| October/November 2009| Analysis of the 4 spiked milk powder samples (5 replicates for each sample) and reporting to the IAEA
- Presentation and discussion about analysis results of 4 spiked milk samples
- Discuss and share work scope for preparation of paper or IAEA internal report | all |
| November/June 2009 | Preparation of paper or IAEA report
- Publication of the paper | all |

Table 2. Work plan for method validation of proposed rapid method of $^{89+90}$Sr in milk
Future activities of the ALMERA network

Mr. Chang Kyu Kim proposed to involve also the Asia-Pacific ALMERA members in the validation of a procedure for the determination of $^{226/228}$Ra in simulated soil and real groundwater using Liquid Scintillation Counting (LSC). For this activity, a work plan was proposed and agreed as described in Table 3.

<table>
<thead>
<tr>
<th>Time schedule</th>
<th>Work scope</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2009</td>
<td>Definition of the candidate recommended procedure</td>
<td>O</td>
</tr>
<tr>
<td>May 2010</td>
<td>Preparation of simulated soil and real ground water</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Testing the candidate recommended procedure</td>
<td>O</td>
</tr>
<tr>
<td>August 2010</td>
<td>Analyze 10 replicate measurements for each simulated sample for the validation of recommended procedure</td>
<td>O</td>
</tr>
<tr>
<td>October 2010</td>
<td>Preparation of the final report</td>
<td>O</td>
</tr>
</tbody>
</table>

Table 3. Work plan for validation of the recommended procedure of 228Ra and 226Ra in soil and water by Liquid Scintillation Counting

Mr. Devender Rao D., from the Environmental Survey Laboratory, Health Physics Division, Bhabha Atomic Research Centre, Tarapur Atomic Power Station 1-4, India, proposed for considerations the following activities to be performed in future in the frame of the ALMERA network.

1. Evaluation of MDA, photo peak area and associated uncertainty from HPGe detector gamma ray Spectra

Gamma Ray Spectrometry using high resolution HPGe detector is one of the most widely used analytical tools for the determination of specific activity due to gamma emitters in various environmental samples. The evaluation of MDA (Minimum Detectable Activity), Photo Peak Area and the associated uncertainty are the integral parts of gamma spectra analysis and also important parameters in the overall gamma ray spectrometry analysis. The approach of analytical Laboratories in the evaluation of these parameters may have quite large variations as different computational soft wares or manual methods are applied. To evaluate the existing degree of differences and also for the purpose of harmonizing the evaluation methodologies, the following programme schedule is proposed:

- Generation of typical background spectra for about 100,000 secs using a ~ 30-50% N- and/or P- type HPGe detector.

- Generation of two typical source spectra, one containing a complex spectra having several radionuclide peaks including multiplets and other containing a few well defined peaks of radionuclides.

- The spectral data (Channel verses Counts) of the above spectra in spread sheet form to be submitted to the participating Laboratories through On-Line ALMERA Website network under an intercomparison exercise programme.

- The participants will be asked to evaluate MDAs in terms of photo peak area counts for several important radionuclides such as 241Am, 210Pb, 144Ce, 131I, 133I, 134Cs, 137Cs, 60Co, 54Co, 40K, 212Pb, 214Pb, 228Ac etc. using their Laboratory methodology and the typical background spectra information.

- Participants will be asked to compute net photo peak area counts using the typical source spectra and the associated uncertainty for the identified peaks. The participants should also subtract the background spectra form the source spectra with appropriate stripping factor.

- Analysis and evaluation of the Laboratories data under the intercomparison programme and determine the degree of differences from the reference peak areas.

- Standardization and recommendation of a methodology in the form of a IAEA document, after having a consultants/experts meeting under IAEA/ALMERA programme.

- Conduct of a repeat inter-comparison exercise to evaluate the implementation of harmonized methodology among the ALMERA Laboratories.

Details of time schedule, generation of typical spectra, preparation of intercomparison exercise and consultants/experts meeting can be worked out after the
consideration of the proposal. However, tentatively the exercise may begin in 2011 as other exercises are already in progress.

2. Determination of NSC (Not-So-Common) radionuclides such as 99Tc and 63Ni in seawater and ground water

99Tc and 63Ni are two important pure Beta emitting radionuclides generally found in the discharges of radioactive waste treatment plant discharges and possibly could be migrated to ground water from the radioactive waste repositories. They being low energy beta emitters, their determination at low levels by direct methods is not possible. A standardized radio-analytical method is very essential for evaluating these nuclides for the long term impact assessment of these nuclides. Although, the nuclides are not related to radiological emergency monitoring, but the ALMERA members must have the capability of estimating them as most of the member Laboratories are attached to nuclear facilities. The programme may consist of:
- A Proficiency Test under IAEA/ALMERA for the determination of 63Ni and 99Tc at low levels using radiochemical separation methods in seawater and ground water.
- Performance evaluation of P.T. exercise.
- Standardization, Validation and Recommendation of procedure.

Details of time schedule may be worked out later, however it may be included in the recommendations for future activities.

Note: As mentioned by the participant from KAERI for 55Fe and 45Ca, they appear to be non-beta emitters and also are short half life nuclides. The properties of these nuclides and also of 99Tc and 63Ni are as given below for information:

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Half Life</th>
<th>Emission Type</th>
<th>E_{max}</th>
<th>Emission Probability %</th>
</tr>
</thead>
<tbody>
<tr>
<td>63Ni</td>
<td>100.1 years</td>
<td>Beta</td>
<td>65.87 keV</td>
<td>100%</td>
</tr>
<tr>
<td>99Tc</td>
<td>213000.0 years</td>
<td>Beta</td>
<td>293.6 keV</td>
<td>99.9999%</td>
</tr>
<tr>
<td>55Fe</td>
<td>2.7 years</td>
<td>No beta Photon</td>
<td>--</td>
<td>16.2%</td>
</tr>
<tr>
<td>45Ca</td>
<td>162.7 days</td>
<td>Beta</td>
<td>25.69 keV</td>
<td>99.99%</td>
</tr>
</tbody>
</table>

3. Determination of OBT (Organically Bound Tritium) in biological samples

OBT (Organically Bound Tritium) is an important component of tritium in biological samples such as marine fish and vegetable samples. Its estimation is also as important as TFT (Tissue Free water Tritium) particularly in the PHWR environment. The readiness/capability of ALMERA members to analyze OBT is also essential. In view of this, the following programme may be included in the future programme recommendation.

- A Proficiency Test exercise for the determination of OBT in Fish powder and/or vegetable powder.
- Performance evaluation of P.T. exercise.

Details of time schedule may be decided later. Tentatively it can start in 2011 as 2009 and 2010 programmes are already in progress.

Recommendations

The ALMERA participants suggested that ALMERA network should be subdivided into additional three regional groups:

- Africa;
- Europe;
- Middle East.

The ALMERA participants highly recommended IAEA to take more active actions to involve into the ALMERA network, institutions from Africa. It was also recommended to involve into the ALMERA network institutions linked with radioecological studies (modeling, environmental parameters definition, ect.).
The ALMERA members suggested to verify the feasibility of collaboration of IAEA with JCAC (Japan Chemical Analysis Centre) for the production of reference materials with matrices typical for the Asia-Pacific Region.

The ALMERA participants strongly recommended that ALMERA members should participate in the ALMERA proficiency tests rather than in the IAEA World Wide Proficiency Tests.

The ALMERA participants agreed to have the 6th ALMERA coordination meeting in Budapest, Hungary, from 23 to 25 November 2009 and hosted by the Hungarian Central Agricultural Office, Food and Feed Safety Directorate.

ALMERA INTERLABORATORY COMPARISON EXERCISES

As it is known, a primary requirement of the ALMERA members is participation in the IAEA proficiency tests which are specifically organized for analytical laboratories of ALMERA network on a regular basis. These proficiency tests are designed to monitor and demonstrate the analytical performance and analytical capabilities of the network members, and to identify gaps and problematic areas where further development is needed. Continued membership has benefits in training and educational opportunities, enhanced mutual trust in results and methodology and objective evidence for accreditation purposes.

The performance evaluation results of the proficiency tests performed in the frame of the ALMERA network are not anonymous for those laboratories nominating to participate as ALMERA members.

During the last four years four proficiency tests were organised within ALMERA activities. These are namely:

The IAEA-CU-2006-04 proficiency test on the determination of gamma emitting radionuclides in soil, grass and water

In this proficiency test 677 results were reported to the IAEA from 38 laboratories belonging to 29 different countries. The participants’ data along with the statistical performance evaluation were compiled and reported to all participants. 30 laboratories reported within the agreed deadline for the rapid reporting measurement (three working days). The overall evaluation showed that 78% of all reported results fulfilled the proficiency test.
The IAEA-CU-2007-04 proficiency test on the
determination of radionuclides in soil, spinach and
water

In this ALMERA proficiency test 1546 measurement
results in rapid and long term reporting modes were
submitted to the IAEA from 58 laboratories belonging to
46 different Member States.

Given the degree of difficulty of the proficiency test and
the wide range of analytes, the overall evaluation showed
a good level of performance, where 78% of all reported
results including the transuranic nuclides fulfilled the
proficiency test criteria.

The IAEA-CU-2007-09 proficiency test on the
determination of 210Po in Water

The 210Po poisoning event which occurred in November
2006 brought into focus a number of issues, including
the capacity of laboratories of ALMERA to rapidly and
accurately determine 210Po in environmental samples. A
number of requests were received from ALMERA
members to address this issue. Responding to these
requests, the IAEA-CU-2007-09 Proficiency Test on the
Determination of 210Po in Water was conducted in the
frame of the ALMERA network. The aim was to gather
information on the current state of practice for 210Po
measurements at various levels in aqueous samples.

The IAEA-CU-2008-04 proficiency test on the
determination of naturally occurring radionuclides in
water and phosphogypsum

The participating laboratories were requested to analyse
gross alpha, gross beta, 226Ra, 234U and 238U in water
samples and 210Pb, 226Ra, 230Th, 234U and 238U in a
phosphogypsum sample.

This proficiency test provided the possibility to improve
the ALMERA members comparability and reliability of
their analytical determinations of natural radionuclides in
environmental matrices.

In conclusion it is important to mention that in all
organized proficiency tests it was evident that the
ALMERA laboratories performance was better that the
population of laboratories world wide in terms of rapid
responding and the accuracy of the results. The
proficiency test results showed that further efforts should
be invested in the development of standard and rapid
methods to improve analytical performance of ALMERA
network.

For specific radionuclides, from 2006 to 2007, there was
a substantial improvement in the analytical performance
of the network as reported in the following graph.

All summary reports of ALMERA proficiency test are
available at the IAEA website.

OTHER NEWS

IAEA Seminar on ‘Uptake of radionuclides into staple crops in the Asian
Region’ held at the Korea Atomic Energy Research Institute (KAERI) in
Daejeon, the Republic of Korea, from 16 to 17 April 2009

Countries of the Asia-Pacific region consider nuclear
ergavy deployment as the most efficient way to fulfill
energy needs in the 21st century in a sustainable manner.
Thus, it can be anticipated that energy generated by
nuclear power in the countries can be greatly extended within several next decades. Although a deployment of nuclear power helps to alleviate the environmental burden caused by other forms of energy production, potential ecological effects related to the discharges of radionuclides to the Environment should be scrutinised and the appropriate information should be made public available. For many years, the International Atomic Energy Agency (IAEA) has been supporting its Member States in the assessment of the radiation impacts on both human beings and the environment. However, existing data were mainly limited to temperate climatic zones because of lack of relevant information. To enhance capabilities of Member States located in the Asia-Pacific Region to predict radionuclide transfer in the environment and, thereby, to assess exposure levels of the public and biota in order to ensure an appropriate level of protection from the effects of ionizing radiation, associated with radionuclide releases and from existing radionuclides in the environment a seminar was organised in the framework of the IAEA Project Terrestrial Radioecology. The seminar continued the IAEA activities on radioecological assessment and modelling that were aimed at refining information to be applied for assessing radionuclide transfer in the Environment. The seminar has provided a good summary of the current radioecological research in the region and identified existing gaps in radioecological research in the Asia-Pacific region. Based on this analysis some recommendations on further studies to be carried out in the region to increase robustness in environmental assessments in the Asia-Pacific region were proposed. The seminar recommended that more attention is be paid to retain experience in environmental assessment practice including creation of the network of the centres of excellence, organisation of training for young researchers in sampling, radioactivity analysis, data evaluation, transfer parameters evaluation, radioecological models and tools applications.

Consultants Meeting on the ‘Use of intentionally discharged radioactive tracers to study surface water processes’

A consultants meeting on the ‘Use of intentionally discharged radioactive tracers to study surface water processes’ took place from 29 June to 3 July 2009 at the IAEA Headquarters in Vienna, to up-date and discuss the recent advances in this area.

Intentionally discharged tracers are widely used in environmental investigations because they allow detailed observations of individual components of complex systems. Such investigations enhance the qualitative understanding of the transport of water and contaminants (dissolved and suspended) through ecosystems; contribute to the evaluation of numerical transport models and hence to the robustness of their predictions; and facilitate advances in the fundamental science underpinning the transport processes.

A wide range of chemical and radioactive tracers is available. Concern is often expressed about the use of radioactive isotopes in environmental research and decision makers generally favour the use of non-radioactive alternatives if available. Despite this, radioactive tracing has proved resilient for the following reasons:

A wide variety of radionuclides and labelled compounds are commercially available, making it likely that a specific tracer will be available for the task in hand. Radioactive isotopes can be measured with high sensitivity at high dilution, and in the case of gamma emitting nuclides, with remotely deployed probes.
In the last analysis, all tracers are contaminants discharged to the environment, and the process of justification involves an assessment of the benefits of the information obtained from the investigation against any consequential detriment. Of primary concern are any potential health effects to operators or the public. In addition, the detriment may extend to the impact of dose on the environment.

Participants: P. Martin (IAEA), J. Bandeira (CNEN-Brazil), P. Brisset (CEA-France), A. Gondin (IAEA), C. Hughes (ANSTO-Australia), A. Worman (KTH-Sweden), Sung-Hee Jung (KAERI-Republic of Korea).

IAEA/WMO technical meeting on sources and measurements of radon and radon progeny

The naturally occurring radionuclide radon (^{222}Rn), together with its radioactive progeny (in particular ^{210}Pb), have been widely used to study a variety of atmospheric processes and to test and validate comprehensive global chemical transport models. Several time series datasets exist of ^{222}Rn and ^{210}Pb concentrations in the planetary boundary layer (PBL), although observations of their vertical profiles are sparse. In recent years the increased availability of relatively low cost high-precision detectors have made gathering of radon datasets more affordable. An example of such a data collection is the use of radon monitors as a part of the World Meteorological Organization’s Global Atmosphere Watch (WMO-GAW) network.

A Technical Meeting on this topic, jointly organised by the IAEA Seibersdorf laboratories and the WMO, was held from 22 to 24 June 2009 at the IAEA Headquarters in Vienna. The meeting brought together scientists and engineers involved in the following areas of research:

- Measurement and modeling of radon exhalation flux densities from Earth’s surface,
- Measurement of atmospheric radon and radon progeny concentrations, and
- Development and use of high-resolution atmospheric transport models.

This meeting was a follow-up to a meeting organized in 2003 by WMO in cooperation with the IAEA. The participants at the 2003 meeting identified that the effective use of radionuclide observations is limited by the accuracy of source functions used by models and by a globally uncoordinated approach to measurements, data archiving and data quality assurance. Consequently, a major focus of the 2009 meeting was on moving towards agreed approaches to estimating radon exhalation flux densities, and to improving quality assurance of measurements both of radon exhalation flux densities and of concentrations of radon and radon progeny in the atmosphere.

Further information is available from: http://www-pub.iaea.org/MTCD/Meetings/Announcements.asp?ConfID=37743

Report of 2003 meeting

Participants to the IAEA/WMO technical meeting on sources and measurements of radon and radon progeny.
ALMERA IN MEMBER STATES

The Korea Institute of Nuclear Safety

The Korea Institute of Nuclear Safety (KINS) is the ALMERA coordinating centre for the Asia-Pacific region and member of the IAEA Advisory Group for the production and characterization of reference materials of terrestrial origin.

KINS was founded on February 14, 1990 based on the Act on the Korea Institute of Nuclear Safety (Law No. 4195). Its mission is to preserve the environment, and to protect the public from radiological disasters caused by the production or use of nuclear energy (Article 1 of the Act on the Korea Institute of Nuclear Safety)

To accomplish its mission, KINS is committed to:

- the performance of safety reviews and inspections of the safety of nuclear facilities or radiation facilities using radioactive sources and radiation generating devices
- the conducting of research on nuclear and radiation safety regulations and development of the related technical standards and criteria
- the monitoring and assessment of environmental radioactivity levels throughout the country
- providing technical support for protection against radiological disaster and train public officials of the central and local government, personnel of the emergency preparedness organizations and radiation workers to respond properly and take necessary preventive measures in a radiological disaster.
- the management of nuclear and radiation related license examinations
- collecting, managing and disseminating various nuclear safety related information

The key services provided by the Korea Institute of Nuclear Safety are reported in the following table.

<table>
<thead>
<tr>
<th>Nuclear safety regulation</th>
<th>Conduction of regulatory safety reviews and inspections of nuclear facilities under construction or in operation</th>
<th>Radiological emergency preparedness</th>
<th>Establishment of technical support and response system for a nuclear accident or incident</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conduction of periodic safety review of nuclear power plants in operation</td>
<td></td>
<td>Establishment of radiological emergency preparedness system</td>
</tr>
<tr>
<td>Radiation safety regulation</td>
<td>Regulation of radiation facilities using radioactive sources and radiation generating devices</td>
<td>Development of safety standards, criteria & regulatory technologies</td>
<td>Development of nuclear and radiation safety regulation technologies</td>
</tr>
<tr>
<td></td>
<td>Regulation of transportation of radioactive sources and nuclear materials (fission and fertile materials)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental monitoring</td>
<td>Conduction of earthquake monitoring services for nuclear power plant sites</td>
<td>Establishment of technology bases for regulating nuclear & radiation safety</td>
<td>Training of regulatory experts for nuclear and radiation safety</td>
</tr>
<tr>
<td></td>
<td>Conduction of nationwide monitoring of environmental radioactivity levels</td>
<td></td>
<td>Strengthening of the radiological emergency preparedness infrastructure</td>
</tr>
</tbody>
</table>
KINS and environmental radioactivity monitoring

In the early 1960’s, global fallout radioactivity was increased over vast territories of the earth because of the atmospheric nuclear weapon test explosions carried out by powerful countries. In 1963, the Korean government launched the systematic environmental radioactivity monitoring to evaluate the influence of the radioactivity in fallout. Like other countries, the Korean environmental radiation monitoring activities were strengthened after the Chernobyl accident in 1986. In addition, it became more systematic and extensive including marine environment since confession about radioactive waste dumping into the northwest Pacific Ocean through the White Book of the former Soviet Union and Russian Federation in 1993. The September 11 attack occurred in the United States in 2001 became the important motivation to reinforce environmental radiation and radioactivity monitoring as an important part of the preparedness of national disaster management against the radioactive terrorism and nuclear accidents. After the Democratic People’s Republic of Korea’s underground nuclear weapon testing in October, 2006, the environmental radiation and radioactivity monitoring framework in the Republic of Korea was faced with new paradigm about monitoring nuclear activities.

Meanwhile, 20 units of nuclear power plants as well as research and educational reactors and nuclear fuel cycles facilities in the Republic of Korea are in operation and 6 units under construction. In addition, the number of nuclear facilities in China rapidly increases. 56 units of nuclear power plant in Japan are also in operation.

Because of these reason, to protect the public from radiological accidents occurred by domestic and neighbouring countries, KINS has dedicated to performing the environmental radiation monitoring as well as safety regulation on nuclear facilities. The framework of the environmental radiation monitoring is divided into three groups according to the objective and purpose, as followings: the nationwide territorial and marine radiation monitoring and the nuclear facility site monitoring, although the nuclear operators have the primary responsibility for monitoring the environmental radiation near the facilities.

In order to early detect radiological abnormality in the Republic of Korea and neighboring countries, to protect the public, and to preserve the environment of the Republic of Korea, KINS established the nationwide environmental radiation monitoring network, namely the Integrated Environmental Radiation Network (IERNet, http://iernet.kins.re.kr), that consists of a Central Monitoring Center (CMC) at KINS, 12 Regional Monitoring Stations (RMS) installed in densely populated major city areas across the country, and 26 Unmanned Monitoring Posts (UMP) installed on such remote island as Ulleung-do and Baengyeong-do and around nuclear power plant sites. In particular, KINS monitors ambient gamma dose rates through the country by deploying IERNet as part of its enhanced effort to monitor environmental radioactivity levels efficiently. All data of the ambient gamma dose rate monitored by RMS and UMP are automatically sent through the internet to the main server computer of the CMC and opened to the public.

The 12 RMS periodically take the environmental samples such as the airborne-dust, fallout, precipitation, tap water and surface water from the public water supply sources, and measure the gross beta activities and gamma emitters in these samples.

Meanwhile, very low level artificial gamma emitting nuclides are monthly analyzed in airborne-dust, fallout, and precipitation collected by the CMC of KINS. The accumulated dose rates are quarterly assessed with TLDs at 39 locations throughout the Republic of Korea in order to assess the annual effective dose. The concentrations of 3H are also analyzed in the precipitation samples which are collected at 12 RRM’s and 3 UMPs and sent to the CRMC. Agricultural and fishery products are purchased and radionuclides in them are analyzed to compile basic data for assessing internal exposure dose of public due to foodstuff intake.

The nationwide environmental radioactivity monitoring program consists of the normal monitoring program and the emergency monitoring program. For normal situation, CMC, RMSs and UMPs routinely carry out monitoring under the normal surveillance program. For emergency situations such as nuclear accident or nuclear weapon testing in neighboring countries, CMC immediately establish the emergency monitoring plan based on the accident type; CRC, RMSs, and UMPs will operate the emergency monitoring program.
To preserve the environment of the Korean Sea from radiological contamination by illegal nuclear activity in marine, KINS has semiannually taken surface and deep sea water, sediment, and marine biological samples from the 21 fixed sampling locations with the help of NFRDI (National Fisheries Research and Development Institute of Korea), and analyzed 3H, 90Sr, $^{239+240}$Pu and 137Cs in them since 1994.

To confirm whether the level of exposure of radioactive materials released from nuclear facilities is well below the limit prescribed in the Atomic Energy Act, KINS also monitors artificial radionuclides including 3H, 14C, 90Sr, Pu isotopes, U isotopes, 60Co, 137Cs, etc. in the environmental samples, and assess the tendency of radionuclide accumulation and prediction on the impact of unexpected radionuclides on the nearby environment, although the nuclear operators have the primary responsibility for monitoring the environment near the facilities.

To implement the environmental radiation monitoring and analyze the radionuclides in environmental samples, KINS has been equipped with various facilities for sample pre-treatment and chemical separation and sophisticated instruments such as α-spectrometry, HPGe γ-spectrometry, Liquid scintillation counters, low background α/β counter, HR-ICP-MS (High Resolution Inductively-Coupled-Plasma Mass Spectrometry). In 2008, KINS installed new MC-ICP-MS (Multi-Collector Inductively-Coupled-Plasma Mass Spectrometry), which is expected to analyze the ultra low level Pu, efficiently.
Equipment available at the Institute of Nuclear Safety:

<table>
<thead>
<tr>
<th>Instruments</th>
<th>No. of systems</th>
<th>Target nuclides</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Spectrometers</td>
<td>14 ch</td>
<td>U, Pu, Th, etc.</td>
</tr>
<tr>
<td>HR-ICP-MS</td>
<td>1</td>
<td>Pu, U, Ra, Th, etc.</td>
</tr>
<tr>
<td>MC-ICP-MS</td>
<td>1</td>
<td>Pu atomic ratio</td>
</tr>
<tr>
<td>Low background α/β counter</td>
<td>3</td>
<td>90Sr, gross α & β</td>
</tr>
<tr>
<td>Liquid Scintillation</td>
<td>3</td>
<td>137Cs</td>
</tr>
<tr>
<td>HPGe γ-Spectrometers</td>
<td>11</td>
<td>γ-emitters</td>
</tr>
<tr>
<td>PERALS (Photo Electron Rejecting Alpha Liquid Scintillation)</td>
<td>1</td>
<td>222Rn, 226Ra, etc.</td>
</tr>
</tbody>
</table>

Meanwhile, in routine analysis of Pu, α-spectrometry has been most commonly used to date, employing the chromatographic separation, which is still a time consuming process. In order to shorten the separation time of Pu from the samples matrix and save operator time in chromatographic column work, KINS developed an on-line sequential injection system, which can be automatically operated to separate Pu from the acid matrix using TEVA resin. This system was modified and the application of the system was extended to the sequential separation for 210Po and 210Pb by IAEA.
New ALMERA member

The Sarayköy Nuclear Research and Training Center in Ankara, of the Turkish Atomic Energy Authority, joined the ALMERA network in July 2009. ALMERA currently (October 2009) consists of 119 laboratories representing 74 countries.

Publications of potential interest to ALMERA members

ALMERA Network Laboratories

Argentina
Comisión Nacional de Energía Atómica
Laboratorio de Metrología de Radioisótopos
Centro Atómico Ezeiza
Presbítero Juan González Y Aragon Nro 15
CP B1802AYA Partido de Ezeiza
Provincia de Buenos Aires (Argentina)

Australia
Australian Radiation Protection & Nuclear Safety Agency (ARPANSA)
Lower Plenty Road 619
Yallambie, Victoria 3085 (Australia)

Australian Nuclear Science and Technology Organization (ANSTO)
New Illawarra Rd
2234, Lucas Heights
Menai N.S.W. (Australia)

Austria
Atominstitution der Österreichischen Universitäten
Schüttelestrasse 115
A-1020, Vienna (Austria)

Universität Wien
Währingerstrasse 42
A-1090, Vienna (Austria)
Belarus
Belarussian State Institute of Metrology
Research Department of Radioactive Metrology (RDRM)
Starovilenski Trakt 93
220053, Minsk (Belarus)

Belgium
Studiecentrum Voor Kernenergie
Centre d'étude de l'Énergie Nucleaire
Boeretang 200
B-2400, Mol (Belgium)

Brazil
Brazilian National Commission for Nuclear Energy (CNEN)
Caixa Postal 913
Br-37701-970, Pocos De Caldas (Brazil)

Brazilian National Commission for Nuclear Energy (CNEN)
Instituto de Radioprotecao e Dosimetria (IRD)
Avda Salvador Allende S/N - Jacarepagua
Cep - 22780-160
Rio De Janeiro, RJ (Brazil)

Brazilian National Commission for Nuclear Energy (CNEN)
Laboratório de Radiometria Ambiental
Instituto de Pesquisas Energéticas e Nucleares
Av. Prof. Lineu Prestes, 2242
Cidade Universitária - CEP 05508 000
São Paulo, (Brazil)

Bulgaria
Executive Environment Agency
Ministry Of Environment & Water
136 Tzar Boris Iii, Blvd.
P.O. Box 251
Bg-1618, Sofia (Bulgaria)

Kozloduy Nuclear Power Plant
Kozloduy, 3321 (Bulgaria)

Canada
Canadian Nuclear Safety Commission (CNSC)
Environmental Compliance & Laboratory Services Division
280 Slater Street
P. O. Box 1046, Station B
Ottawa, Ontario – KIP 5S9 (Canada)

Chile
Comision Chilena de Energia Nuclear
Amunategui 95
Casilla 188-D
Santiago De Chile (Chile)

China
China Institute for Radiation Protection
270 Xuefu Street
P.O. Box 120
Taiyuan, 030 006
Shanxi Province (China)

Chinese Academy of Agricultural Sciences (CAAS)
Institute of Agro-Environment and Sustainable Development
ALMERA of CAAS
No. 12 Zhongguancun South Street
100081 Beijing (China)
China Institute of Atomic Energy
P.O. Box 275-24
Beijing, 102413 (China)

Costa Rica
Universidad de Costa Rica
Ciudad Universitaria R. Facio
San Jose (Costa Rica)

Cuba
Centro de Proteccion e Higiene
De Las Radiaciones
Calle 20 Entre 41 Y 47
Apartado Postal 6791
Havana, 11300 (Cuba)

Centro de Isotopos
Carretera la Rada Km 3
Guanabacoa, Apto 22
Havana (Cuba)

Centro de Estudios Ambientales de Cienfuegos
Carretera a Castillo de Jagua, km 1.5
Apartado Postal 5
Código Postal 59350
Ciudad Nuclear
Cienfuegos (Cuba)

Cyprus
State General Laboratory
Ministry of Health
44 Kimonos Street, Acropolis
1451, Nicosia (Cyprus)

Czech Republic
National Radiation Protection Institute
Bartoškova 28
140 00 Praha 4 (Czech Republic)

Denmark
Risoe National Laboratory
P.O. Box 49
Dk-4000, Roskilde (Denmark)

Egypt
National Center for Nuclear Safety & Radiation Control
Atomic Energy Authority
3 Ahmed El-Zomor Street
P.O. Box 7551, Nasr City
Cairo, 11762 (Egypt)

Estonia
Estonian Radiation Protection Centre
Kopli 76
Tallinn, Ee-10416 (Estonia)

Ethiopia
National Radiation Protection Authority
P.O. Box 20486
Code 1000, Addis Ababa (Ethiopia)

Finland
Radiation & Nuclear Safety Authority (STUK)
P.O. Box 14
Fin-00881, Helsinki (Finland)

France
IPSN/DPRE/SERNAT
F-91191, Gif-Sur-Yvette (France)
<table>
<thead>
<tr>
<th>Country</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>FTU/FZK Research Center Karlsruhe</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 3640</td>
</tr>
<tr>
<td></td>
<td>D-76021, Karlsruhe (Germany)</td>
</tr>
<tr>
<td></td>
<td>Physikalisch-Technische Bundesanstalt</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 3345</td>
</tr>
<tr>
<td></td>
<td>D-38023, Braunschweig (Germany)</td>
</tr>
<tr>
<td>Greece</td>
<td>National Technical University of Athens</td>
</tr>
<tr>
<td></td>
<td>9 Iroon Polytechniou Street</td>
</tr>
<tr>
<td></td>
<td>Polytechnioupoli</td>
</tr>
<tr>
<td></td>
<td>Gr-157 73, Athens (Greece)</td>
</tr>
<tr>
<td></td>
<td>Aristotelian University of Thessaloniki</td>
</tr>
<tr>
<td></td>
<td>Gr-54124, Thessaloniki (Greece)</td>
</tr>
<tr>
<td>Hungary</td>
<td>Hungarian Academy of Sciences</td>
</tr>
<tr>
<td></td>
<td>KFKI Atomic Energy Research Institute</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 49</td>
</tr>
<tr>
<td></td>
<td>H-1525, Budapest (Hungary)</td>
</tr>
<tr>
<td></td>
<td>Hungarian Agricultural Authority</td>
</tr>
<tr>
<td></td>
<td>Food & Feed Safety Directorate</td>
</tr>
<tr>
<td></td>
<td>Central Radioanalytical Laboratory</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 1740</td>
</tr>
<tr>
<td></td>
<td>H-1465, Budapest, 94 (Hungary)</td>
</tr>
<tr>
<td>Iceland</td>
<td>Gelslavarnir Rikisins</td>
</tr>
<tr>
<td></td>
<td>National Institute of Radiation Protection</td>
</tr>
<tr>
<td></td>
<td>Laugavegur 118d</td>
</tr>
<tr>
<td></td>
<td>Is-150, Reykjavik (Iceland)</td>
</tr>
<tr>
<td>India</td>
<td>Madras Atomic Power Station</td>
</tr>
<tr>
<td></td>
<td>Kalpakkam, 603 102</td>
</tr>
<tr>
<td></td>
<td>Tamilnadu State (India)</td>
</tr>
<tr>
<td></td>
<td>Tarapur Atomic Power Station</td>
</tr>
<tr>
<td></td>
<td>OIC/Environmental Survey Laboratory</td>
</tr>
<tr>
<td></td>
<td>Via Boisar</td>
</tr>
<tr>
<td></td>
<td>TAPS Colony, TAPP(post) 401 504</td>
</tr>
<tr>
<td></td>
<td>Tarapur, Maharashtra (India)</td>
</tr>
<tr>
<td></td>
<td>Bhabha Atomic Research Centre</td>
</tr>
<tr>
<td></td>
<td>Radiation Standards Section</td>
</tr>
<tr>
<td></td>
<td>Mumbai, 400085 (India)</td>
</tr>
<tr>
<td>Indonesia</td>
<td>National Nuclear Energy Agency</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 7043 JKSKL</td>
</tr>
<tr>
<td></td>
<td>Jakarta, 12070 (Indonesia)</td>
</tr>
<tr>
<td>Islamic Republic of Iran</td>
<td>Atomic Energy Organization of Iran (AEOI)</td>
</tr>
<tr>
<td></td>
<td>North Karegar Street</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 14155-4494</td>
</tr>
<tr>
<td></td>
<td>14374, Tehran (Islamic Republic of Iran)</td>
</tr>
<tr>
<td>Iraq</td>
<td>Iraqi Atomic Energy Commission</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 765, Tuwaitha</td>
</tr>
<tr>
<td></td>
<td>Baghdad (Iraq)</td>
</tr>
</tbody>
</table>
Israel
Nuclear Research Center Negev (NCRN)
Negev (Israel)

Italy
Centrale Elettronucleare di Caorso
So.G.I.N Laboratories
I-29012, Caorso, Piacenza (Italy)

Centrale Elettronucleare di Trino
So.G.I.N Laboratories
Strada Statale 31 Bis
I-13039, Vercelli (Italy)

ENEA
Istituto di Radioprotezione
Laboratorio Casaccia
Via Anguillarese 301
I-00060, Santa Maria Di Galeria - Rome (Italy)

ENEA
Istituto di Radioprotezione
Laboratorio Trisaia
Strada Statale Ionica 106, Km 419,5
I-75026, Rotondella - Matera (Italy)

ENEA
Research Centre
Strada per Crescentino
I-13040, Saluggia - Vercelli (Italy)

Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)
Via di Castel Romano 100
I-00128, Rome (Italy)

ARPA Lombardia
Agenzia Regionale per la Protezione dell’Ambiente della Lombardia
Via Juvara, 22
I-20129 Milan (Italy)

Jamaica
University of the West Indies
Mona Campus
Kingston, 7 (Jamaica)

Japan
Japan Chemical Analysis Center
Office of Planning and Coordination
295-3, Sanno-Cho, Inage-ku
Chiba-shi, 263-002 (Japan)

Jordan
Jordan Atomic Energy Commission
P.O. Box 70
Amman, 11934 (Jordan)

Kazakhstan
National Nuclear Center
Ibragimov Str. 1
480082, Almaty (Kazakhstan)

Republic of Korea
Korea Institute of Nuclear Safety
P.O. Box 114, Yusung
Daejeon, 305-600 (Republic of Korea)
Korea Atomic Energy Research Institute
150 Duckjin-Dong, Yusung-Ku
Daejeon, 305-353 (Republic of Korea)

Kuwait
Kuwait Institute for Scientific Research
P.O. Box 24885
Safat, 13109 (Kuwait)

Latvia
Radiation Safety Centre
Maskavas 165
Riga, Lv-1019 (Latvia)

Lebanon
Lebanese Atomic Energy Commission
P.O. Box 11-8281
Beirut (Lebanon)

Lithuania
Environment Protection Agency
Ministry of Environment
A. Juozapavicius 9
Lt-9311, Vilnius (Lithuania)

National Veterinary Laboratory
J. Kairiukscio 10
Lt-08409, Vilnius (Lithuania)

Radiation Protection Centre
Kalvariju 153
Lt-08221, Vilnius (Lithuania)

Luxembourg
Division de la Radioprotection
Ministère de la Santé
Villa Louvigny
Allée Marconi
L-2120 Luxembourg

Malaysia
Malaysian Nuclear Agency (Nuclear Malaysia)
Bangi, 43000, Kajang, Selangor D.E. (Malaysia)

Mexico
Instituto Nacional de Investigaciones Nucleares (ININ)
Km 36,5 Carretera Mexico Toluca
Edo.De Mexico, C.P. 52045
Salazar (Mexico)

Comision Federal de Electricidad
Km 182 de la Carretera Federal 180,
Tramo Poza Rica
Puerto De Veracruz, C.P. 91490
Farallon, Veracruz (Mexico)

Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS)
Dr. Jose Ma. Barragan # 779
Col. V. Narvarte, Del. B. Juarez
Mex-03020, Mexico City (Mexico)

Montenegro
Center for Ecotoxicological Researches of Montenegro
Put Radomira Ivanovica 2
Yu-81000, Podgorica (Montenegro)
<table>
<thead>
<tr>
<th>Location</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myanmar</td>
<td>Myanmar Atomic Energy Committee</td>
</tr>
<tr>
<td></td>
<td>No. 6 Kaba Aye Pagoda Road</td>
</tr>
<tr>
<td></td>
<td>Yangon (Myanmar)</td>
</tr>
<tr>
<td>Netherlands</td>
<td>National Institute of Public Health & Environment</td>
</tr>
<tr>
<td></td>
<td>Antonie Van Leeuwenhoeklaan 9</td>
</tr>
<tr>
<td></td>
<td>NL-3720 BA, Bilthoven (Netherlands)</td>
</tr>
<tr>
<td></td>
<td>NRG</td>
</tr>
<tr>
<td></td>
<td>Westerduinweg 3</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 25</td>
</tr>
<tr>
<td></td>
<td>1755 ZG Petten (Netherlands)</td>
</tr>
<tr>
<td>New Zealand</td>
<td>National Radiation Laboratory</td>
</tr>
<tr>
<td></td>
<td>108 Victoria St.</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 2509</td>
</tr>
<tr>
<td></td>
<td>Christchurch (New Zealand)</td>
</tr>
<tr>
<td>Norway</td>
<td>Norwegian Radiation Protection Authority</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 55</td>
</tr>
<tr>
<td></td>
<td>N-1345, Oesteraas (Norway)</td>
</tr>
<tr>
<td></td>
<td>Institute for Energy Technology</td>
</tr>
<tr>
<td></td>
<td>Instituttveien 18</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 40</td>
</tr>
<tr>
<td></td>
<td>N-2027, Kjeller (Norway)</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Pakistan Institute of Nuclear Science & Technology (PINSTECH)</td>
</tr>
<tr>
<td></td>
<td>Mnsr Lab. Naa Aeg</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 1482- Nilore</td>
</tr>
<tr>
<td></td>
<td>92/051, Islamabad (Pakistan)</td>
</tr>
<tr>
<td>Panama</td>
<td>Centro de Investigacion con Tecnicas Nucleares</td>
</tr>
<tr>
<td></td>
<td>Fac. De Cien. Natur. y Exactas</td>
</tr>
<tr>
<td></td>
<td>25 Universidad de Panama</td>
</tr>
<tr>
<td></td>
<td>Ciudad Univ. O. Mendez Pereira</td>
</tr>
<tr>
<td></td>
<td>Ciudad De Panama (Panama)</td>
</tr>
<tr>
<td>Peru</td>
<td>Instituto Peruano de Energía Nuclear (IPEN)</td>
</tr>
<tr>
<td></td>
<td>Av. Canadá 1470</td>
</tr>
<tr>
<td></td>
<td>San Borja</td>
</tr>
<tr>
<td></td>
<td>Lima 41 (Peru)</td>
</tr>
<tr>
<td>Philippines</td>
<td>Philippine Nuclear Research Institute</td>
</tr>
<tr>
<td></td>
<td>Commonwealth Avenue</td>
</tr>
<tr>
<td></td>
<td>Diliman, Quezon City, 1101 (Philippines)</td>
</tr>
<tr>
<td>Poland</td>
<td>Central Laboratory for Radiological Protection</td>
</tr>
<tr>
<td></td>
<td>Ul. Konwaliowa 7</td>
</tr>
<tr>
<td></td>
<td>Pl-03-194, Warsaw (Poland)</td>
</tr>
<tr>
<td></td>
<td>Institute of Oceanology</td>
</tr>
<tr>
<td></td>
<td>Polish Academy of Sciences</td>
</tr>
<tr>
<td></td>
<td>Powstancow Warszawy 55</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 197</td>
</tr>
<tr>
<td></td>
<td>Pl-81-712, Sopot (Poland)</td>
</tr>
<tr>
<td>Location</td>
<td>Organization</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Poland</td>
<td>Laboratory of Radiometry of the Central Mining Institute</td>
</tr>
<tr>
<td></td>
<td>Plac Gwarkow 1 P.B. 3672 PL-40-166 Katowice (Poland)</td>
</tr>
<tr>
<td>Portugal</td>
<td>Instituto Tecnologico e Nuclear</td>
</tr>
<tr>
<td></td>
<td>Estrada Nacional 10 P-2686-953, Sacavem (Portugal)</td>
</tr>
<tr>
<td>Romania</td>
<td>Institute for Nuclear Research</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 78, Colibasi R-0300, Pitesti (Romania)</td>
</tr>
<tr>
<td></td>
<td>Nuclear Power Plant Cernavoda</td>
</tr>
<tr>
<td></td>
<td>Stada Medgidiei, 1 C.P. 42 8625, Cernavoda Jud. Constanta (Romania)</td>
</tr>
<tr>
<td></td>
<td>Institute of Physics & Nuclear Engineering</td>
</tr>
<tr>
<td></td>
<td>P.O. Box Mg-6 R-76900, Bucharest Sector 5 (Romania)</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>SIA ‘Radon’ 7th Rostovsky Ln., 2/14 119121, Moscow (Russian Federation)</td>
</tr>
<tr>
<td></td>
<td>Russian Institute of Agricultural Radiology & Agroecology 249020, Obninsk</td>
</tr>
<tr>
<td></td>
<td>Kaluzhskaya Oblast (Russian Federation)</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>Institute of Atomic Energy Research</td>
</tr>
<tr>
<td></td>
<td>King Abdulaziz City for Science & Technology P.O. Box 6086 Riyadh, 11442</td>
</tr>
<tr>
<td></td>
<td>(Saudi Arabia)</td>
</tr>
<tr>
<td>Serbia</td>
<td>Institute of Occupational & Radiological Health</td>
</tr>
<tr>
<td></td>
<td>Deligradska 29 Yu-11000, Belgrade (Serbia)</td>
</tr>
<tr>
<td>Slovakia</td>
<td>Nuclear Power Plant Bohunice</td>
</tr>
<tr>
<td></td>
<td>Sk-919 31, Jaslovske Bohunice (Slovakia)</td>
</tr>
<tr>
<td></td>
<td>Nuclear Power Plant Mochovce</td>
</tr>
<tr>
<td></td>
<td>Komenskeho 3 Sk-935 39, Levice (Slovakia)</td>
</tr>
<tr>
<td></td>
<td>Institute of Preventive & Clinical Medicine Limbova 14 Sk-833 01, Bratislava</td>
</tr>
<tr>
<td></td>
<td>(Slovakia)</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Institute Jozef Stefan Jamova 39 P. P. 3000 Si-1001, Ljubljana (Slovenia)</td>
</tr>
<tr>
<td>South Africa</td>
<td>South African Nuclear Energy Corporation P.O. Box 582 Pretoria, 0001 (South</td>
</tr>
<tr>
<td></td>
<td>Africa)</td>
</tr>
<tr>
<td>Country</td>
<td>Address</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Spain | C I E M A T
Ed-7, Avda Complutense 22
E-28040, Madrid (Spain) |
| | Escuela Técnica Superior de Ingeniería
Departamento de Ingeniería Nuclear y Mecánica de Fluidos
Laboratorio de Medidas de Baja Actividad
Alameda de Urquijo s/n
48013 Bilbao (Spain) |
| Sweden | Swedish Radiation Safety Authority
Solna Strandväg 96
S-171 16, Stockholm (Sweden) |
| Switzerland | Federal Office of Public Health
3, Chemin Du Musée
Ch-1700, Fribourg (Switzerland) |
| Syrian Arab Republic | Atomic Energy Commission of Syria
P.O. Box 6091
Damascus (Syrian Arab Republic) |
| Thailand | Office of Atomic Energy for Peace
16 Vibhavadi Rangsit
Chatuchak
Bangkok, 10900 (Thailand) |
| Tunisia | Centre National des Sciences et Technologies Nucleaires
Pole Technologique
Sidi Thabet, 2020 (Tunisia) |
| Turkey | Turkish Atomic Energy Authority (TAEK)
Sarayköy Nuclear Research and Training Center
SANAEM Saray Mah. Atom Cad. No:27
06983 KAZAN - ANKARA - TURKEY |
| Ukraine | Ukrainian Hydrometeorological Institute
Prospect Nauki 37
Kiev-28, 03028 (Ukraine) |
| United Arab Emirates | Central Food Control Laboratory
Sharjah Municipality
Sultan Ben Saqr El Qassimi
P.O.Box 22
Sharjah (United Arab Emirates) |
| United Kingdom of Great Britain and Northern Ireland | Imperial College at Silwood Park
Buckhurst Road
Ascot, Sl5 7te
Berkshire (United Kingdom)
Veterinary Laboratories Agency
Woodham Lane, New Haw
Addlestone, Surrey Kt15 3nb (United Kingdom)
National Physical Laboratory
Radioactivity Metrology Group
F7-A7, Hampton Road
Middlesex, TW11 OLW (United Kingdom) |
Centre for Environment, Fisheries & Aquaculture Science
Pakefield Road
Lowestoft, Nr33 0HT
Suffolk (United Kingdom)

LGC Limited
Queens Road
Teddington,
Middlesex, TW11 0LY (United Kingdom)

United States of America
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545 (United States of America)

U.S. Department of Energy (DOE)
Analytical Chemistry Division
Environmental Measurements Laboratory
376, Hudson Street
New Your, NY 100014-3621 (United States of America)

U.S. Department of Energy (DOE)
850 Energy Drive
Idaho Falls, ID 83402 (United States of America)

Purdue University
1396 Physics Building
West Lafayette, IN 47907-1396 (United States of America)

University of California
Lawrence Livermore National Laboratory
7000 East Avenue
P.O. Box 5001
Livermore, CA 94551 (United States of America)

Savannah River Technology Center
Westinghouse Savannah River Co.
Building 773-A
P.O. Box 616
Aiken, SC 29802 (United States of America)

Uruguay
Dirección Nacional de Energía y Tecnología Nuclear (DNETN)
Ministerio de Industria, Energía y Minería (MIEM)
Laboratorios del Departamento de Tecnología
Mercedes n1041, 2do. Piso
11.100 Montevideo (Uruguay)

Venezuela
Instituto Venezolano de Investigaciones Científicas (IVIC)
Apartado Postal 21827
Caracas, 1020-A (Venezuela)

Ministerio del Poder Popular para Energía y Petróleo de Venezuela
Dirección General de Energías Alternativas
Laboratorio de Dosimetría y Medición de la Radiación de Bajo Fondo
Av. Libertador cruce con calle el Empalme
Edificio MENPET-PDVSA, Torre Oeste, piso 5
Caracas (Venezuela)

Zambia
National Council For Scientific Research
P.O. Box 310158
Lusaka, 15302 (Zambia)
ALMERA Newsletter, No. 2, December 2009

The ALMERA Newsletter is prepared twice per year by the IAEA laboratories in Seibersdorf. Correspondence and materials to be considered for publishing should be sent to:

Umberto Sansone
IAEA Laboratories Seibersdorf
2444 Seibersdorf, Austria
Fax: (+43 1) 2600-28222 or (+43 1) 26007
E-mail: ALMERA@iaea.org

International Atomic Energy Agency
Vienna International Centre, PO Box 100,
1400 Vienna, Austria

Printed by the IAEA in Austria, December 2009.