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Abstract. Geodesic Acoustic Modes (GAM) are known to constitute a continuous spectrum due to radial inho-
mogeneities. The existence of a singular layer causes GAM to mode convert to short wavelength kinetic GAM
(KGAM) via finite ion Larmor radius (FLR) and finite guiding-center drift-orbit-width (FOW) effects. The dis-
persion relation of GAM/KGAM with FLR/FOW as well as parallel electric field contributions is derived to
demonstrate the mode conversion to KGAM and propagation in the lower-temperature and/or higher-q region.
Corresponding collisionless damping of GAM/KGAM excited in the large q region, including higher-order har-
monics of ion transit resonances, has been investigated and the analytical expression for the damping rate agrees
well with numerical results in its validity regime. Excitation of energetic-particle-induced GAM (EGAM) by
velocity space anisotropy is also investigated taking into account the coupling to the GAM continuous spectrum.
The response of energetic particles is studied nonperturbatively, and both local and nonlocal EGAM dispersion
relations are derived assuming a single pitch-angle slowing-down energetic particle equilibrium distribution func-
tion. For a sharply localized energetic particle (EP) source, it is shown that the EGAM mode is self-trapped where
the EP drive is strongest, with an exponentially small damping due to tunneling coupling to outward propagating
KGAM. While for a broadly distributed EP source, it is shown that the EGAM will be heavily continuum damped
due to the strong coupling to GAM continuous spectrum.

1. GAM continuous spectrum and collisionless damping

Geodesic Acoustic Modes (GAMs) [1] are toroidally symmetric normal modes unique to toroidal
plasmas, and the mode structure is also nearly poloidally symmetric. They exist since the
charge separation effect, due to ion radial magnetic drift associated with geodesic curvature,
causes a finite parallel a.c. electric field (∝ Te/Ti) and a perturbed ion diamagnetic current
to ensure quasi-neutrality via electron and ion dynamic responses, respectively. GAMs have
received much attention in magnetic fusion plasma due to their potentially important roles in
regulating drift waves, and, hence, transports via nonlinear interactions.

GAM can be described by the magnetic flux surface averaged quasineutrality condition, which
reads

∂r
(
δJr

)
= 0, (1)

where δJr is the fluctuating radial current and (· · · ) denotes magnetic flux surface averaging.
Here, we consider a large aspect-ratio axisymmetric Tokamak with straight field line flux co-
ordinates (r, θ, ξ), and the equilibrium magnetic filed is given by B0 = B0(eξ/(1 + ϵ cos θ) +
(ϵ/q)eθ), where, ξ and θ are respectively, toroidal and poloidal angle-like flux coordinates of
the torus. δJr is made up of polarization current and the perturbed diamagnetic current due to
density accumulation in poloidal direction. The wave equation of GAM, at the lowest order, is

∂r
[
n0(r)ω

(
1− ω2

G(r)/ω
2
)]

∂rδϕ = 0, (2)

with ωG the lowest order GAM frequency. Equation (2) is identical to that describing shear
Alfvén wave (SAW) resonance [2] and, thus, it demonstrates that GAM also constitutes a con-
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tinuous spectrum described by ω = ωG(r) [3]. Fluctuations of GAM continuous spectrum
consist of singular structures, and will decay asymptotically in time as ∝ (1/t) exp(−iωG(r)t)
[4]. The corresponding radial wavenumber increases with time as

|kr| ≡ |∂r exp(−iωGt)/ exp(−iωGt)| ≃ |(dωG(r)/dr)t|. (3)

Equation (3) can be viewed as a physical manifestation of phase mixing, kr → ∞ as t → ∞,
so the fluid approximation will break down and kinetic effects, such as FLR effects, must be
taken into account and regularize the singularity [5]. The GAM wave equation will become

∂r
[
n0(r)ω

(
1− (ω2

G(r)/ω
2)
(
1 + αk2

rρ
2
L

))]
∂rδϕ = 0, (4)

where ρL is the ion Larmor radius. This equation describes the mode conversion of GAM to
short wave-length kinetic GAM (KGAM) at ωG(rc) = ω, analogy to SAW mode conversion to
its kinetic counterpart (kinetic Alfvén wave) [5]. α is positive for typical plasma parameters, so
the resulting KGAM will propagate in the lower GAM continuum frequency region, i.e., lower
temperature and/or higher q region, which is usually outward. The dependence of the sign of α
on the plasma parameters, such as Te/Ti and q, are discussed in [3].

It is pointed out in [3] that the mode frequency and mode structure, described by equation (4),
can only be solved when there exists a source term, which can be due to coupling to an antenna
or drive by drift wave turbulence or energetic particles. When drive by free energy source is
considered, the drive threshold in terms of drift wave turbulence intensity or energetic particle
density depends crucially on the GAM collisionless damping rate; so, it is desirable to have an
analytical expression of GAM damping, valid over broad range of Tokamak parameters.

In the small ion drift orbit width limit, i.e., with krρLq ≪ 1, the dispersion relation of GAM can
be readily obtained from the degeneracy argument [6] of GAM and SAW beta-induced eigen-
mode (SAW-BAE) [7], and the resulting dispersion relation coincides with the corresponding
expressions of the other authors in their validity limits [8].

The GAM collisionless damping rate derived from the small drift orbit limit decreases with q,
so GAM tends to exist in the edge region of Tokamak to minimize ion collisionless damping
[8]. However, we need to relax the krρLq ≪ 1 assumption for the nonlinear excitation favors
short KGAM radial wavelengths [3], and derive the corresponding expression that are valid
in this regime. A very compact expression for GAM dispersion relation can be derived for
1/q2 ≪ krρL ≪ 1, i.e., large drift orbit limit for resonant ions [9]:

Dr = b

{
1−

(
7

4
+ τ

)
v2it

ω2R2
0

+ b
v2it

ω2R2
0

(
31
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9

4
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8
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, (5)

Di =
√
2
ω

|ω|
exp{−ωR0/(

√
2bvi)}

[
1 +

krρivi
ωR0

+
2bv2i
ω2R2

0

(
1 +

5

4
τ + τ 2

)
−2b+

1

24

(
ω2R2

0

4b2q2v2it
−

√
2bωR0

b2q2vit

)]
, (6)

where b ≡ k2
rρ

2
L/2. In equation (6), all the high order ion transit resonance contribution to the

GAM collisionless damping are included, and the GAM/KGAM collisionless damping rates
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from equations (5) and (6) are in excellent agreement with TEMPEXT numerical simulations
in the common validity regime of the two approaches [10].

2. GAM excitation by energetic particles

As in the case of SAW continuum, from which EPM are excited when wave-particle resonant
drive exceeds continuum damping, EPs can also excite modes from the GAM continuous spec-
trum. That EPs can drive GAMs has been observed in recent experiments [11] and theoretical
stability properties of this energetic-particle-induced GAM (EGAM) were analyzed in [12].

A question that raises naturally from the SAW-GAM analogy is “ what is the contribution of
the GAM continuous spectrum in the excitation of EGAM?” In this work, we consider EGAM
excited via the transit frequency resonance with EPs in the small magnetic drift orbit limit,
taking into account the coupling to GAM continuous spectrum [13, 14, 15].

2.1. Theoretical formulation

Energetic particle physics, are readily included in equation (1), one has

e

Te

(nc+nh)(δϕ−δϕ) = − e

Tc

ncδϕ+⟨J0(k⊥ρL,c)δHg,c⟩+⟨ e
m

∂F0h

∂E
δϕ+J0(k⊥ρL,h)δHg,h⟩, (7)

in which, nc and nh are respectively the equilibrium density of bulk ions and EPs, and ⟨· · · ⟩
indicates velocity space integration. δHg is the nonadiabatic response of ions, which can be
solved from the gyrokinetic equation

(ω − ωd + iωtr∂θ)δHg = −(e/m)(∂F0s/∂E)J0(k⊥ρL)ωδϕ, (8)

where, ωtr = v∥/(qR0) is the transit frequency, ωd = ω̂d sin θ = −kr(v
2
⊥ + 2v2∥)/(2ΩR0) sin θ

is the magnetic drift frequency associated with the geodesic curvature, Ω = eB/mc is the
gyrofrequency and J0(krρL) is the Bessel function accounting for the FLR effects.

To maximize the transit resonance drive, we adopt the optimal ordering for the GAM frequency
ω ∼ ωtr,h and, hence, q2 ∼ Th/Tc. Meanwhile, for the consistent treatment of small but finite
EP magnetic drift orbit widths, we assume krρd,h ≪ 1, in which, ρd,h is the drift orbit width of
EPs. Adopting δ as the smallness expansion parameter in our asymptotic analysis, we then take
1/q ∼ O(δ1/2) and krρd,h ∼ O(δ1/2). We also assume nh/nc ∼ O(δ), thus, the contribution of
EPs and bulk ions will enter the dispersion relation at the same order.

In order to make further analytic progress, we take a single pitch-angle slowing-down equi-
librium distribution for the EPs; i.e., F0h = c0(r)δ(Λ − Λ0)HE , where δ(x) is the Dirac
delta function, Λ ≡ µ/E is the pitch angle, µ = v2⊥/(2B) is the magnetic moment, c0(r) =√

2(1− Λ0B)nb(r)/(4πB ln (Eb/Ec)), nb(r) is the density of the EPs beam, Eb and Ec are,
respectively, the EP birth and critical energies, and HE = Θ(1 − E/Eb)/(E

3/2 + E
3/2
c ), with

Θ(1− E/Eb) being the Heaviside step function.

Solving equation (7) order by order, we obtain the local dispersion relation of EGAM from the
surface averaged quasi-neutrality condition as

EEGAM = −1 +
ω2
G

ω2
+Nb

[
C ln

(
1−

ω2
tr,b

ω2

)
+

Λ0B(2− Λ0B)2

(1− Λ0B)5/2
ω2
tr,b/ω

2

1− ω2
tr,b/ω

2

]
= 0 ; (9)
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where ωtr,b =
√
2Eb(1− Λ0B)/(qR0), Nb =

√
1− Λ0Bq2nb/(4 ln (Eb/Ec)nc) and C = (2−

Λ0B)(−2 + 5Λ0B)/(2(1− Λ0B)5/2).

Note that, in equation (9), the first term of EP response (the logarithmic term) is the resonance
drive at the EP transit frequency while the second term (the second term in the square bracket)
determines how much the real frequency of local EGAM is lower than the local GAM contin-
uum frequency and will not contribute to the drive of EGAM. From equation (9), the EGAM is
locally unstable only when C > 0, which gives the local necessary instability condition

Λ0B > 2/5. (10)

We note here that the local EGAM dispersion relation, equation (9), has two unstable branches.
When ωG < ωtr,b, there is the GAM branch with a real frequency very close to the local GAM
continuum frequency; when ωG > ωtr,b, we have the beam branch, with its real frequency very
close to ωtr,b. In this work, we will focus on the beam branch; an EP-mode indeed.

Next we will look at the effect of GAM continuous spectrum on the excitation of EGAM. We
will look at two different cases. First, we consider the EGAM driven by EP beam sharply
localized away from the GAM resonance layer [16]; thus, we are looking at the case where
the EGAM coupling to the GAM continuous spectrum is formally exponentially small [14].
Second, we will look at the case when the scale length of EP beam is comparable with (larger
than) that of GAM continuous spectrum and thus, the limit where EGAM is strongly coupled
to GAM continuous spectrum [3, 15]. We expect, that the two limits will yield different con-
tributions from GAM continuous spectrum, since, in the second case, there may be singularity
in EGAM mode structure that is formally eliminated in the first case by the small drift orbit
assumption [14].

2.2. EGAM driven by localized energetic particles

Considering the exponentially small EGAM coupling to GAM continuous spectrum, we as-
sume an EP beam localized about r = rb, where the local GAM continuum frequency is larger
than the beam transit frequency, and the beam characteristic spatial scale length Lb is much
smaller than that of GAM continuous spectrum, Lg ≡ |ω2

G(r)/(∂ω
2
G(r)/∂r)|; such that the

beam is localized away from the GAM resonance layer rc, where ωG(rc) = ω ≈ ωtr,b. In our
orderings, we have that FOW and FLR of EPs enter at O(δ4); while FOW and FLR of bulk
ions enter at O(δ6) [14]. Thus, FOW/FLR effects are dominated by EPs inside the localization
domain of the beam, while FOW/FLR effects of bulk ions take over away from the beam. In the
following, we will solve the mode equations in both the inner (|r − rb| . Lb) and outer region
(|r − rb| ≫ Lb) up to the relevant orders of the asymptotic expansions, in order to take into
account leading order FOW/FLR effects needed to solve the mode structures and frequencies
of EGAM.

2.2.1. Global EGAM wave equation: localized solution

In the inner region, EGAM is bounded by the beam localization [16], and EP FLR/FOW ef-
fects dominate. Keeping up to O(δ4) terms in equation (7), assuming vanishing current to the
tokamak wall for we are searching a localized solution, and letting δE = −∂rδϕ, we obtain the
following “localized” GAM/EGAM eigenmode equation:{

∂r
(
−ρ2d,bNb(r)H/2

)
∂r + EEGAM + F

}
δE = 0. (11)
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where ρd,b ≡ q
√
2Eb/Ωi, H is an O(1) function of Λ0B0 describing EP FOW effects, and

F = F1 +F2, denoting the local frequency shift. The expressions of F1, F2 and H are given in
[14].

The characteristic scale of the mode is ∆ ≈
√
ρd,bLb ≪ Lb ≪ Lg, so we can expand Nb(r) ∼=

Nb(rb)(1−(r−rb)
2/L2

b). We can further ignore the coupling to the GAM continuous spectrum,
i.e., ωG ≈ ωG(rb), and introduce r − rb = ξz; the mode equation becomes then[

∂2
z − 2ξ2(EEGAM(rb) + F (rb))/(ρ

2
d,bNb(rb)H)− z2

]
δE = 0, (12)

where ξ4 = ρ2d,bNb(rb)HL2
b/(2(−1+ω2

G(rb)/ω
2+F1)) and causality constraint must be applied

in determining ξ2. Equation (12) is the Weber equation and its eigenvalue condition gives the
following “localized” EGAM dispersion relation

−2ξ2(EEGAM(rb) + F (rb))/(ρ
2
d,bNb(rb)H) = 2l + 1, l = 0, 1, 2, · · · . (13)

Here, l is the radial eigenmode number. Meanwhile, the radial electric field is δE ∝ Hl((r −
rb)/ξ) exp(−(r − rb)

2/(2ξ2)), with Hl being Hermite polynomials. Different eigenstates have
close real frequencies, while their growth rates decrease with the eigenmode number due to the
sharp localization of the EPs.

2.2.2. Global EGAM wave equation: nonlocal solution and coupling to the GAM contin-
uous spectrum

In the outer region where EPs fade away, contributions from EPs are negligible and the disper-
siveness is dominated by thermal ions. For this reason, we need to keep terms up to O(k4

rρ
4
L,t) to

include the nonlocal physics via thermal ion FLR/FOW effects. The corresponding eigenmode
equation of EGAM/GAM is then given by

[∂2
r + 2

(
1− ω2

G(r)/ω
2 − F1 − F3

)
/(ρ2L,tG)]δE = 0. (14)

with G denoting the FOW/FLR effects of bulk ions, F3 the higher order terms to be added for
consistency to the expression of F in equation (11) and the expressions of G and F3, are given
in [14].

This equation describes KGAM propagating in the r > rc region with the mode structure near
r = rc given by Airy Functions. The scale length of KGAM is readily shown to be given by
L ≈ ρ

2/3
L,tL

1/3
g . Thus, the characteristic EGAM scale-length varies across the radial domain,

unless we introduce the auxiliary ordering Lb/Lg ≈ δ5/2 that would yield constant k2
rρ

2
L,t ≈ δ3

across the entire domain.

In the following, we shall apply WKB analysis [17] and match solutions of equations (12)
and (14) in the intermediate region and derive the global eigenmode dispersion relation of the
nonlocal EGAM driven by sharply localized EPs. For the complete wave propagation and ab-
sorption physics in the region where the EP beam decays away, we need to keep systematically
terms up to O(k4

rρ
4
L,t) to account for FOW/FLR effects of bulk ions and local wave frequency

shift. Taking into account the above considerations and noting that the typical scale length of
δE is L ≈

√
ρd,bLb ≪ Lb, Lg, equations (11) and (14) can then be combined into the following

eigenmode equation [
∂2
r +Q(r)

]
δE = 0, (15)
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FIG. 1. : Potential well: −Q vs r/Lb.
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FIG. 2. : Sharply distributed EP: global mode
structure.

where Q(r) = (2(EEGAM + F + F3))/(−ρ2d,bNb(r)H − ρ2L,tG). Equation (15) has the WKB
solution

δE = (A1 exp(i

∫ √
Q(r)dr) +B1 exp(−i

∫ √
Q(r)dr))/Q1/4(r). (16)

The function Q(r) has three regular turning points (zeros) T1, T2 and T3. T1 and T2 are the
turning points pair due to the localization effect of EPs and form a bound state as we have dis-
cussed for equation (12). T3 is the turning point for mode conversion to KGAM, beyond which
the mode propagates outward, as noted in the discussion following equation (14). The struc-
ture of the potential well (−Q(r)) as well as the positions of the turning points are qualitatively
illustrated in Fig. 1. .

The corresponding WKB dispersion relation of the eigenmode described by equation (15) can
then be straightforwardly derived via asymptotic matching of the WKB solutions, equation
(16), across the turning points and is given by

e2iW1 = (e2iW2 + 1)/(e2iW2 − 1); (17)

where W1 =
∫ T2

T1

√
Q(r)dr and W2 =

∫ T3

T2

√
Q(r)dr. The tunneling coefficient e2iW2 is for-

mally exponentially small, and the WKB eigenmode dispersion relation of EGAM becomes
approximately

W1 = (l + 1/2)π − ie2iW2 , l=0,1,2,· · · . (18)

Equation (18) is, of course, the well-known Bohr-Sommerfeld quantization condition includ-
ing the tunneling coupling to outgoing KGAM. Near marginal stability,

γ = −W1i/(∂W1r/∂ωr)− e2iW2/(∂W1r/∂ωr); (19)

expressing the mode excitation when the EP resonant drive exceeds the tunneling-convective
damping, and ωr is solved from W1r(ωr) = 0, where W1r and W1i are, respectively, the real
and imaginary parts of W1 [14]. The mode structure of EGAM from numerical solution of
equation (15) (cf. Fig. 2. ) shows mode trapping around the radially position of strongest
EP drive and that there is an exponentially small tunneling of the electric field to an outward
propagating KGAM at the resonant layer with the GAM continuous spectrum, which is very
similar to the DIII-D observations by Nazikian et al [18]. Meanwhile, the EGAM threshold
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condition, due to non-local coupling to KGAM, is expected to increase for decreasing Lg, and
is shown numerically in Fig. 3. with L3 < L2 < L1 = ∞.

2.3. EGAM driven by broadly distributed energetic particles source

We consider EGAM excited by a radially broadly distributed EP source ( i.e., Lb ≥ Lg), such
that the resonant point with the GAM continuous spectrum falls within the EP localization
region. The EGAM can then be expected to couple strongly with the GAM continuum. In
this case, the small orbit assumption employed in the localized energetic particle source limit
will no longer be valid across the whole domain. With krρd,h & 1, the eigenmode equa-
tion of EGAM becomes in general an integro-differential equation. Here, we will examine its
krρd,h ≪ 1 and krρd,h ≫ 1 limits, employ the Pade’s approximation and derive a correspond-
ing differential eigenmode equation valid asymptotically in both limits.

For krρd,h ≪ 1 and a broadly distributed EP source, the EP FOW/FLR effects dominate across
the whole radially domain; as we showed in the localized EP source case. So we can ignore the
FLR/FOW effects of bulk thermal ions and obtain:

Ec = −1 + ω2
G/ω

2 + F1, (20)
Eh = EEGAM + F2 + k2

rρ
2
d,bNbH/2− Ec ≡ Eh0(1 + A k2

rρ
2
d,b); (21)

where, Eh0 ≡ EEGAM + 1 − ω2
G/ω

2 + F2 and A ≡ NbH/(2Eh0). Meanwhile, at the resonant
point of GAM continuous spectrum, |krρd,b| → ∞, the response of the EPs to the radial electric
field becomes adiabatic; i.e.,

δnE = −(e2/m) ⟨∂F0E/∂E⟩ δϕ. (22)

However, we may still employ the small drift orbit approximation for thermal ions; since the
FLR/FOW of thermal ions will remove the singularity at the resonant point. Combining equa-
tions (20), (21) and (22), we find the following Pade-approximation WKB dispersion relation
of EGAM [15]:

k2
rEc + k2

rEh0/(1− A k2
rρ

2
d,b) = 0, (23)

and the corresponding eigenmode equation becomes:

∂r[A ρ2d,b∂r(−1 + ω2
G/ω

2 + F1)∂r + EE + F1 + F2]∂rδϕ = 0. (24)
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Equation (24) recovers properly the GAM/EGAM eigenmode equation in the krρd,b ≪ 1 limit.
At the resonant point of GAM continuous spectrum, however, it only qualitatively describes
the response of EPs.

As noted for equation (4), the solution of an equation in the form of (24) is fully determined
only when the non-homogeneous problem is solved in the presence of a source term. Here,
we will ignore the coupling to the boundary, and try to find an internally localized solution.
Written in the standard WKB form [like what we did in equation 15], equation (24) contains
two regular turning points at (EE + F1 + F2)/(A ∗ ρ2d,bEc) + (∂rEc)

2/(4E 2
c ) ≃ 0 and a second

order singular turning point at Ec = 0; so equation (24) describes a localized solution trapped
by a potential well, with the positions of the zeros and poles given in Fig. 4. , in which T1

and T2 are, the two regular turning points and S is the second order singular turning point. At
the resonant point of GAM continuous spectrum with Ec(S) = 0, Ec(S) ≃ ∂rEc ∗ (r − S),
equation (24) will yield the solution δϕ ∝ ln(

√
r − S), and kr → ∞ at S. The singularity in

the mode structure, thus, suggests the continuum damping of EGAM at S due to the coupling to
the GAM continuous spectrum. If we further include the FLR of bulk thermal ions in equation
(24), then it will also have the physics of removing the singularity by bulk ion FLR and mode
conversion to KGAM.
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