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Kinetic thermal ions effects on Alfvénic fluctuations in tokamak plasmas
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Abstract. Adopting the theoretical framework for the generalized fishbone-like dispersion relation, an extended
hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account
both thermal ion compressibility and diamagnetic effects in addition to energetic particles kinetic behaviors. The
extended model has been used for implementing an eXtended version of Hybrid Magnetohydrodynamics Gyroki-
netic Code (XHMGC) to study thermal ion kinetic effects on Alfvénic modes driven by energetic particles, such as
kinetic beta induced Alfvén eigenmode in tokamak fusion plasmas. It is shown, both analytically and by numer-
ical simulations, that, in the presence of thermal ion kinetic effects, the beta induced Alfvén eigenmode (BAE)
- shear Alfvén wave continuous spectrum can be discretized into radially trapped eigenstates known as kinetic
BAE (KBAE). While the thermal ion compressibility gives rise to finite BAE accumulation point frequency, the
discretization occurs via the finite Larmor radius and finite orbit width effects. Simulations and analytical theories
agree both qualitatively and quantitatively. Simulations also demonstrate that KBAE can be readily excited by the
finite radial gradients of energetic particle profiles.

In this work, we extend the hybrid magnetohydrodynamics (MHD)-gyrokinetic model, derived
originally in [1] for applications to numerical simulations of energetic particles (EPs) driven
Alfvén modes. The main differences with respect to the usual pressure coupling equation [1]
are due to renormalization of the inertia term, to properly account for finite thermal ion diamag-
netic effects, as well as to the gyrokinetic treatment of the thermal ion pressure tensor, which
allows us to properly handle wave-particle resonant interactions in the low frequency regime,
where they can be of crucial importance for the analysis of linear and nonlinear behaviors of
collisionless burning plasmas. The extended model has been developed assuming ideal Ohm’s
law as well as ignoring finite Larmor radius (FLR) effects of thermal ions in order to sim-
plify the technical complications while still maintaining all essential physics ingredients [2].
In practice, maintaining the ideal MHD Ohm’s law as limiting case implies assuming Te ≪ Ti
and neglecting ion FLR effects, although finite magnetic drift orbit widths are fully retained.
For demonstrating the validity of the modified equations, we show that they are equivalent to
the quasi-neutrality and vorticity equations derived in [2] for the frequency range from the ki-
netic ballooning mode (KBM) and BAE to the toroidal Alfvén eigenmode (TAE). The extended
model has been used for implementing an eXtended version of HMGC [3] Code (XHMGC) [4].
Thus, XHMGC [4] has the capability of investigating thermal ion kinetic effects on Alfvénic
modes driven by energetic particles, such as kinetic beta induced Alfvén eigenmode in toka-
mak fusion plasmas. Meanwhile, we demonstrate the existence of KBAE [5] based on the
theoretical framework presented in [6]. Both initial value problem by prescribing the initial
perturbations, as well as driven resonant-cavity problem via “internal antenna” [7] excitations
have been adopted to investigate KBAE properties. Numerical simulation results are also used
to illustrate KBAE peculiar features with and without EP drive.
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1. The extended hybrid model

Reference [2] presents a general theoretical framework for stability analyses of various modes
and the respective governing equations. It shows that all modes of the shear Alfvén branch,
having two scale radial structures, corresponding to the continuous spectrum, and frequencies
in the range between the thermal ion transit and Alfvén frequency can be consistently described
by one single general fishbone-like dispersion relation (GFLDR) [2, 8, 9, 10]. The governing
equations for describing the excitation of the shear Alfvén wave (SAW) frequency spectrum
by energetic ions precession, precession-bounce and transit resonances in the range ω∗pi ≈
ωti ≤ ω ≤ ωA, covering the entire frequency range from KBM/BAE [11, 12, 13, 14] to TAE
[15, 16, 17], are generalized kinetic vorticity equation and quasi-neutrality condition, which
can be written as follows (see Eq.(16) and Eq.(17) in Ref. [2]):
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where the non-idiabatic particle response, δKs, is obtained via the gyrokinetic equation
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Here, s denotes all particle species (e = bulk electrons, i = bulk ions, E = energetic parti-
cles), es and ms are the species electric charge and mass, F0s is the equilibrium distribution
function, ε = v2/2 the energy per unit mass, k ≡ −i∇ is the wave vector, J0 is the Bessel
function of order zero, k⊥ is the perpendicular wave vector, ρ2s = v2⊥/ω

2
cs with ωcs = esB/msc

being the cyclotron frequency, ω∗pi = (k × b · ∇Pi)/nimiωci is the thermal ion diamagnetic
frequency, P⊥ and P∥ are, respectively, the total perpendicular and parallel plasma pressures,
ω̂ds = (msc/es)(µ + v2∥/B)Ωk with Ωk = k × b · κ, and κ = b · ∇b. Note that the differ-
ence between ω̂ds and ωds = (msc/es)(µΩB + v2∥Ωk/B), with Ωb = k× b · ∇B/B, has been
discussed in [2, 18] and, generally, must be handled properly. Although for many applications
in low pressure (β = 8πP/B2 ≪ 1) plasmas, one can consider ωds = ω̂ds after solving for
δB∥ from perpendicular pressure balance, as implicitly assumed in equations (1)-(3) [2]. In
the high frequency case, ωA ≥ ω ≥ ω∗pi ≫ ωti, the thermal ion non-adiabatic response δKi

can be neglected. Thus, the quasi-neutrality condition, equation (2), reduces to the ideal MHD
approximation, δϕ ≃ δψ; i.e. δE∥ ≃ 0 [18]. Meanwhile, neglecting the ∝ ω∗pi term, equation
(1) becomes equivalent to equation (3) in [1], i.e. the following pressure coupling equation in
the hybrid MHD-gyrokinetic approach

ρb
dvb

dt
= −∇Pb − (∇ ·PE)⊥ +

J×B

c
; (4)

where the subscript b denotes the bulk plasmas (electrons and thermal ions). Here, the EP
contribution to the perpendicular momentum change of the plasma has been neglected, due to
nE/nb ≪ |ω/ω∗E| [1, 2].
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In order to extend the hybrid model to the low-frequency regime where ω ∼ ωti, we need to
include the effects of the thermal ion compressibility and diamagnetic drift within the hybrid
simulation scheme. That is, we need to include effects associated with the δKi terms in equa-
tion (1) and (2). The pressure coupling equation in the MHD-gyrokinetic approach, equation
(4), has to be accordingly modified to

ρb(
d

dt
+ iω∗pi)vb = −∇Pe − (∇ ·PE)⊥ − (∇ ·Pi)⊥ +

J×B

c
, (5)

where both PE and Pi need to be calculated from solutions of the gyrokinetic equations, while
Pe is neglected in the present approach, assuming Te/Ti → 0.

Correspondences between equation (5) and the generalized kinetic vorticity equation, equation
(1) can be established term by term [4]. The present model includes the equilibrium parallel
current effects, as discussed in [2] (Appendix), and can be readily deduced from [19] as well as
the modified momentum balance equation implemented in XHMGC. The present model is valid
in the nonlinear case too. This is deduced easily from the comparison with the corresponding
discussion from [19] and from the structures of equation (5) in the reference [20]. That equation
clearly shows that, for the small FLR limit, the structure is the same as that of equation (5), since
the nonlinear terms, treated explicitly, are those that are coming from convective nonlinearity
and from the Maxwell stress nonlinearity, both of which are included in XHMGC.

2. Linear Dispersion Relation of KBAE

With the inclusion of small but finite FLR and FOW effects, we combine the vorticity equa-
tion (see equation (7) in [6]) and the quasi-neutrality condition (see equation (8) in [6]) and
obtain [5] (
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where ωA ≡ vA/qR0 is the Alfvén frequency, vA = B/
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2, ωBAE = qωti(7/4 + τ)1/2 is defined as

the value of the asymptotic (high-frequency limit) BAE frequency. Here, the first term on the
LHS contains τbi term due to the usual electron pressure corrections to the ideal Ohm’s law,
which is negligible near the BAE accumulation point, as discussed in [6, 21]. The second term
includes the thermal ion FLR correction to the charge density due to the polarization current;
while the third term contains the thermal ion FOW corrections to the charge density due to the
perturbed diamagnetic current. Note that it is this latter term that accounts for peculiar features
associated with geodesic curvature in toroidal geometry [6, 21]. The FLR/FOW correction
is important when one considers mode conversion due to radial singular structures associated
with resonant excitation of the SAW continuous spectrum. Equation (3) reduces to the well
kown result for kinetic Alfvén waves (KAW) [22, 23] by taking the limit ωBAE/ω → 0. We
can cast equation (6) into the following standard form

∂2θδΦ + Λ2δΦ− θ2Q2(ω)δΦ = 0; (7)
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In this work, when comparing numerical simulation results with analytical theory, we further
consider the limit τ = 0, which allows us to assume the ideal MHD Ohm’s law [4]. We
also neglect thermal ion FLR effects; i.e. we drop the 3/4 factor in equation (8). From the
expression of S(ω) given in [25], one can readily obtain
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Note that, equation (9) represents the approximation of (3/4 + q2ωti/ωS(ω)) under the condi-
tion (7/4+τ)q2 ≫ 1. In this case,Re[3/4+q2ω2/ωtiS(ω)] > 0 is always satisfied. Meanwhile,
as discussed in [25], the sign ofRe[3/4+q2ω2/ωtiS(ω)] can change at low frequency with pos-
sible interesting implications on the mode dynamics. Equation (4) can be solved locally for the

FIG. 1. : Time history of the normalized electrostatic potential at the accumulation point, (a) without
kinetic thermal ions; (b) with kinetic thermal ions for βic = 0.0072, where the black line is the real
part of the electrostatic potential; the blue line is the imaginary part; and the red line corresponds to an
exponentially scaling e−γt; (c) |ϕ| in log scale.

discretized KBAE spectrum near the BAE accumulation point. The existence of radially lo-
calized discrete modes can be understood as follows: the KAW is trapped within the potential
well formed on the “high frequency side” of the local SAW continuous spectrum [22, 23] and
modified by thermal ion compressibility effects near the BAE accumulation point. Meanwhile,
on the “low frequency side” [22, 23], KAW is evanescent. In this condition, analogous to that
discussed by Rosenbluth and Rutherford for KAW in [26] and Mett and Mahajan for kinetic
toroidal Alfvén Eigenmode (KTAE) in [27], radially bound states (discrete modes) can exist,
whose energy levels correspond to those of the “harmonic oscillator” described by equation
(7).

Λ2 = (2ℓ+ 1)Q (10)

with ℓ = 0, 1, 2 · · · being the “radial quantum number” [6, 21]. Note that (10) describes the
energy levels of well localized radially bound states. The finite coupling to the (radial) external
region (ideal region) and non-uniform plasma response via longer wavelength feature of the
global mode structures is described by [6, 21, 28]

−2Q1/2Γ(3/4− Λ2/4Q)

Γ(1/4− Λ2/4Q)
= δWf + δWk. (11)
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Here, δWf and δWk are, respectively, the perturbed potential energies of the background MHD
fluid and EP in the ideal region. Equation (8) reduces to the generalized fishbone like dispersion
relation [2, 21, 29]

iΛ = δWf + δWk (12)

in the limit |Λ2/4Q| ≫ 1; i.e. when the fine structures of “discretized” SAW continous spec-
trum are unimportant due to the intrinsic (linear) frequency line width connected with EP drive
or time coherence of the external source [10, 25, 30] . This can be easily verified by taking
the large argument expansion of the Euler gamma functions. Global plasma properties, thus,
affect the BAE/KBAE dispersion relations [6, 21, 28, 29] via δWf and δWk. It is worthwhile
noting that, for most unstable modes that are relevant for the description of EP transport in
burning plasmas [2, 29, 31], EP dynamics enter only via δWk and never contribute to the iner-
tial layer. The dispersion relation for radially localized KBAE modes, equation (10), is readily
obtained from equation (11) for either |δWf + δWk| ≪ |Q|1/2 (even modes, ℓ = 0, 2, 4 · · · ) or
|δWf + δWk| ≫ |Q|1/2 (odd modes, ℓ = 1, 3, 5 · · · ).

(1) (2)

FIG. 2. : (1) Maximum amplitude for different antenna frequency. ∗ is the amplitude (a.u.); red dashed
line corresponds to the fitting function given in equation (13). (2) Frequency comparison between nu-
merical simulation results by “antenna” excitations and theoretical values. △ is eigenfrequency from
simulations for n=1, + is eigenfrequency from simulations for n=3, the black dashed line is ωBAE

the accumulation point frequency, the blue line is KBAE frequency for n=1, and the red line is KBAE
frequency for n=3.

3. Simulation Results

Both initial perturbations and “antenna” excitations have been used to simulate BAE or KBAE
with kinetic thermal ion dynamics. Simulations refer to an equilibrium magnetic field chara-
terized by shifted circular magnetic surfaces with inverse aspect ratio a/R0 = 0.1 and the
q-profile given, in the cylindrical approximation, by q(r/a) = q(0) + [q(a)− q(0)]r2/a2, with
q(0) = 2.7 and q(a) = 3.9. In the initial-value simulations, n = 3 and m = 9 perturbation
in the electrostatic potential is initially introduced around the q = 3 location. In the present
simulations, the equilibrium thermal ion density and temperature are kept uniform to neglect
the diamagnetic drift. Figure 1 (a) and (b) show the time histories of the electrostatic poten-
tials without and with thermal ions kinetic effects respectively. Figure 1 (a) shows that, in the
case without thermal ions kinetic effects, the perturbed field is purely damped due to phase
mixing at the accumulation point, where the accumulation point frequency is ωacp = 0. When
thermal ion kinetic effects are taken into account, figure 1 (b) shows that the perturbed field
oscillates with a finite frequency and damps exponentially due to the ion Landau damping, as
demonstrated from the semi-log plot shown in figure 1 (c). The simulation shown in figure 1
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(b) and (c) refer to βic = 0.0072. Here, βic is defined as βic = 8πnicTic/B
2, and the subscript

ic denotes core ions.
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FIG. 3. : Simulation results of mode excitations by EP for βH = 0.009. The top panels describe
the case without kinetic thermal ions, the bottom panels describe the case with kinetic thermal ions
for βic = 0.0128. Column (a) is the radial mode structure, column (b) is the frequency spectrum and
column (c) is the poloidal mode structure contour plot.

We then use “antenna” excitation [19] to investigate the eigenmode frequencies, damping rate
and the mode structures. In figure 2 (1), for different “antenna” frequencies, the maximum
amplitudes of the electrostatic potential response are plotted at r = 0.5a. The damping rate is
related to the maximum wave response amplitude by [32]

δϕmax ∝ 1√
(ω2

0 − ω2
ant) + 4γ2ω2

ant

. (13)

Here, δϕmax is the maximum amplitude, ωant is the “antenna” frequency, ω2
0 = ω2

r + γ2, ωr

is the eigenmode real frequency given by the frequency corresponding to the maximum δϕmax

and γ is the damping rate. Thus, the eigenmode frequency and damping rate can be measured.
In figure 2 (2), we have plotted the BAE accumulation frequencies ωBAE in the fluid limit,
analytically predicted ℓ = 0 KBAE eigenmode frequencies from equation (10), as well as
eigenmode frequencies determined via “antenna” excitation simulations versus βi for n = 1
and n = 3, respectively. Note that the analytically predicted KBAE frequencies are in good
agreement with those obtained from numerical simulation results; and both are higher than the
ωBAE accumulation frequencies. In addition, in numerical simulations, the observed oscillation
frequencies are constant across the mode radial extension; further indicating the oscillations
are eigenmodes. Note also that the n = 3 KBAE frequency is higher than the n = 1 KBAE
frequency; consistent with the theoretical predictions of equation (10) and that the (FLR)FOW
kinetic effects increase with the toroidal mode number, n. There is no observation of the higher
(ℓ ≥ 1) radial eigenstates of KBAE. This may be the case either because the potential well is
not sufficiently deep to trap the higher eigenstates [6] or due to the relatively strong damping,
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the frequency resolution is not sufficiently fine to resolve the neighboring eigenstates. The
simulation results is verified through benchmarks with GTC [34].

Simulation results of Alfvénic modes excited by EPs are shown in figure 3. Simulations refer
to a fixed value of βH = 8πnHmHv

2
H/B

2 = 0.009 (the on axis EP pressure parameter) and
toroidal mode number n=3. The EP velocity-space equilibrium distribution function is taken
to be purely circulating slowing-down distribution [33] with birth energy E0 = mHv

2
H , where

mH = mic. The on-axis parameters are: nH0/nic = 0.05, vH/vA = 0.3, ρLH/a = 0.03.
The EP equilibrium density profile is taken to be nH(r) = nH0(1 + 2(r/a)3 − 3(r/a)2). The

FIG. 4. : The real frequency and growth rate for the n=3 mode versus different thermal ion pressure
parameters for βic = 0.0072, 0.0128, 0.02. “+” is the mode real frequency of simulation results by EP
excitations; “△” is the KBAE frequencies by antenna excitations; solid line denotes the theoretical BAE
accumulation point frequency; red “∗” is the growth rate by EP excitation simulations.

top panels describe excitations without thermal ion kinetic effects. Simulation results with
kinetic thermal ion effects are presented in the lower panels. Column (a) of the top panel
shows that the excited mode is localized around r = 0.5, where the EP drive is maximum and,
correspondingly, the dominant poloidal mode number is m = nq = 9. Meanwhile, column
(b) shows that the real frequency of the mode is around 0.85ωtE , where ωtE = vH/qR is the
beam-ion transit frequency at q = 3. These simulation results are, thus, consistent with the
theoretical predictions for the energetic particle mode (EPM) [9, 13]. Note that EPM exists
entirely due to EPs; such that its radial localization, real frequency and linear growth rate are
intrinsically determined by the EP pressure gradient drive, characteristic dynamical frequencies
and competition between the EP-wave resonance drive and the BAE-SAW continuum damping.
When thermal ion kinetic effects are included, column (b) of the lower panels in figure 3 shows
that the SAW continuum has accumulation points at the finite BAE frequencies. Meanwhile,
the excited modes, as shown in column (a) and (b), are localized around r ≈ 0.5a and r ≈ 0.7a
corresponding, respectively, to the dominant poloidal harmonics m = 9 and m = 10. Note
that, from column (b), both modes have frequencies above BAE accumulation point; i.e., in
the range of KBAE. That the m=9 mode has an intensity higher than that of m=10 is due to
the stronger EP drive around r = 0.5a. We emphasize that, with thermal ion kinetic effects
included, there exists the frequency gap with accumulation point frequency at ωBAE; which
either nullifies or significantly reduces the continuum damping rate. This explains why the
weakly driven m = 10 mode is absent in the top panels without the kinetic thermal ion gap.
That EP excited oscillations are KBAE is further demonstrated in figure 4; where the real
frequencies of simulation results by both “antenna” excitations and EP excitations are plotted
versus the thermal ion temperature. Figure 4 clearly shows that the frequencies scale properly
with the BAE frequency. That the growth rate decrease with the thermal ion temperature can be
understood as due to either the stronger damping and/or the weaker EP driven with the higher
BAE frequency.
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