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Abstract. Global gyrokinetic toroidal code (GTC) is used to study the low-frequency modes in tokamaks in-
cluding geodesic acoustic mode (GAM) and beta-induced Alfvén eigenmode (BAE). GAM and BAE have the
same frequency due to the geodesic curvature and thermal particle compressibility in toroidal plasmas. Important
new insights include: the collisionless damping rate of the GAM is greatly enhanced by trapped electrons in the
high-q region of tokamak (q is the safety factor) due to the resonance of the GAM oscillation with the trapped
electron bounce motion; nonlinear self-interactions of the GAM cannot efficiently generate the second harmonic
due to a cancellation between the perpendicular convective nonlinearity and the parallel nonlinearity for the long
wavelength GAM; the BAE is excited by antenna and energetic particles, the non-perturbative contributions by
energetic particles modify the mode structure and reduce the frequency of the stable eigenmodes relative to the
ideal magnetohydrodynamic (MHD) theory.

1. Introduction

Geodesic acoustic mode (GAM)[1] and beta-induced Alfvén eigenmode (BAE)[2] have been
widely observed in tokamak experiments[3, 4]. They have the same frequency, which is on the
order of ion transit frequency, and can be damped through ion Landau damping. GAM is an
electrostatic mode and is often observed at the edge of the tokamak, while BAE is an electro-
magnetic mode. GAM and BAE can degenerate at the mode rational surface. In this work, we
use the global gyrokinetic toroidal code (GTC)[5, 6] to study the linear and nonlinear properties
of GAM and the excitation of BAE. In the GAM collisionless damping study[7], it is found
that the GAM damping rate is greatly enhanced by the trapped electrons through a resonance
of the bounce motion with the GAM oscillation. This resonance is clearly verified by the struc-
ture of the perturbed electron distribution function in the phase space. In the GAM nonlinear
self-interaction study[8], GTC simulations without the parallel nonlinearity find the generation
of the second harmonic (ω = 2ω

GAM
) quasimodes when the GAM amplitude increases to the

experimentally-relevant level. The generation of the second harmonic of the GAM is much
weaker when the parallel nonlinearity is kept in the simulation. This results are consistent
with the nonlinear gyrokinetic theory for the GAM, which shows that the perpendicular con-
vective nonlinearity can be cancelled by the parallel nonlinearity in the long wavelength limit
(krρi � 1, where kr is the GAM radial wavelength and ρi is the ion gyroradius). GTC has
been successfully applied to the simulations of MHD modes such as TAE[9] and RSAE[10].
In the BAE study[11], we successfully excite the BAE in GTC simulations both through an
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external antenna and by energetic particle density gradients. The antenna excitation enables
us to measure the BAE frequency, damping rate and mode structure accurately. We find that
the BAE frequency at small q is slightly higher than the BAE accumulation point frequency,
and also higher than the theoretical prediction. In the energetic particle excitation, the non-
perturbative contributions by energetic particles modify the BAE mode structure and frequency
relative to ideal MHD theory. The finite Larmor radius effects of energetic particles reduces the
BAE growth rate. We note that GTC simulation of BAE is the first global gyrokinetic simula-
tion of BAE. GTC gyrokinetic simulation has been successfully benchmarked with an extended
hybrid-MHD gyrokinetic code XHMGC[12].

2. GAM collisionless damping by trapped electrons

In our GTC particle simulations, a flux-surface-averaged ion guiding center density perturbation
is initiated to generate the GAM. The radial profile of the GAM is set to be a sin function with
the wavevector to be krρi = 0.11. And the density perturbation at the inner and outer boundary
is initiated to be zero. We use a small simulation domain ∆r = [0.45a, 0.55a] (a is the minor
radius ), Ti = Te, and a constant q profile as the magnetic shear has little effect on the GAM
damping. An electrostatic version of the fluid-kinetic hybrid electron model[13, 14] is used to
treat the kinetic electron response in our simulations.

1 2 3 4 5 6 7 8 9
1 . 6 5
1 . 7 0
1 . 7 5
1 . 8 0
1 . 8 5
1 . 9 0
1 . 9 5
2 . 0 0
2 . 0 5
2 . 1 0
2 . 1 5

 

 q

ω
 �u

nit
 v i/R 0�

 

 

 S - W  t h e o r y
 k i n e t i c  e l e c t r o n s  
 a d i a b a t i c  e l e c t r o n s

( a )

 ε = 0 . 2

1 2 3 4 5 6 7 8 9
0 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0
0 . 1 2
0 . 1 4

 

ε = 0 . 2

( b )
 

 

 

q

 |γ|
 �u

nit
 v i/R 0�

 S - W  t h e o r y
 k i n e t i c  e l e c t r o n s
 a d i a b a t i c  e l e c t r o n s

Figure 1: Comparison of the GAM real frequency and damping rate between adiabatic and kinetic
electron simulations at different q.

In the simulation with adiabatic electron response, the GAM real frequency and damp-
ing rate agree with Sugama and Watanabe’s theory (S-W theory) very well in the theory’s
limit[7, 15]. Since the number of trapped particles is proportional to

√
ε, ε = 0.2 is used in

the simulations with kinetic electron response and comparisons are made between kinetic and
adiabatic electron simulations. It is shown that the GAM frequency is insensitive to the trapped
electrons while the GAM damping rate is significantly enhanced (Fig. 1). From Fig. 1 (a),
the frequency of the simulations with kinetic electrons also agrees with the S-W theory. As for
the damping rate in Fig. 1 (b), simulation results with adiabatic electrons at ε = 0.2 is slightly
higher than the theory due to the finite ε effects[16]. More importantly, we find that the damping
rate in the simulations with kinetic electrons at ε = 0.2 is much higher than that of adiabatic
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electrons. We note that when q is larger than 3.0, the results of simulation with kinetic electrons
are almost one order of magnitude higher than adiabatic electrons. This means that the trapped
electron effect is typically more important than the finite orbit width effect on the GAM damp-
ing rate in the high-q region.

Figure 2: Contour plot of trapped electron bounce frequency ωbe and passing electron transit frequency
ωte (in unit of ω

G
≡ ω

GAM
) along with the simulation result of the (δfe/fe0)2 in E − µ space. Here (a)

and (b) are simulation with q = 4 and q = 6, respectively.

In order to further illustrate that the enhancement of the GAM damping rate in the kinetic
electron simulation is mainly due to the trapped electron response, we analyze the (δfe/feo)

2

in E − µ phase space (δfe is the electron density perturbation, E and µ are the electron energy
and magnetic moment, respectively). The initial δfe is set to be zero, while the ion guiding
center density perturbation is initiated as a flux-surface-averaged quantity. If trapped electron
bounce motion resonates with GAM oscillation, the amplitude of (δfe/fe0)

2 for the resonant
electrons in the phase space will increase faster than the non-resonant electrons. As electron
bounce frequency is only the function of E and µ, we plot the electron bounce frequency along
with the (δfe/fe0)

2 in the same E − µ phase space (Fig. 2). The electron bounce frequency is
integrated by the following equation:

ωbe = 2π/τbe = 2π(

∫ θb

−θb

dl

|v|||
)−1 = 2π(

∫ θb

−θb

dl√
2(E − µB)

)−1. (1)

Here τbe and θb is the trapped electron bounce period and poloidal angle at the turning point,
respectively. From Fig. 2 we can see that the (δfe/fe0)

2 of the trapped electrons with bounce
frequency around the GAM frequency ω

GAM
= ωbe is much larger than that of other trapped

electrons. Comparing Fig. 2 (a) and (b), we can see that the maximum of (δfe/fe0)
2 locates

at E ≈ 0.45(Ti) and E ≈ 1.0(Ti) for q = 4.0 and q = 6.0, respectively. It also agrees with
the bounce frequency relation ωbe ∝

√
Ti/q for deeply trapped electrons. These simulation
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results clearly show that the enhancement of the GAM damping rate in simulations with kinetic
electrons is due to the resonance between the GAM oscillation and the trapped electron bounce
motion.

3. Importance of parallel nonlinearity in GAM nonlinear self-interaction

In the D-IIID experiment[17], the nonlinear generation of the second harmonic of GAM has
been observed. The detected GAM density fluctuation near the mid-plane is around 1− 2% and
the extrapolated peak fluctuation is 10−15%. In our simulations, the D-IIID experiment param-
eters are used as much as possible. The parallel nonlinearity are not included first. We use an
initial perturbation of the ion guiding center density δn00/n0 = 0.01. The density perturbation
δn01/n0 is initially zero, but rises within a GAM oscillation period to a value of δn01/n0 ≈ 0.1.
The second harmonic with a characteristic frequency of 2ω

GAM
is observed in this nonlinear

regime as we can see from Fig. 3 (a). A zero-frequency density perturbation components is also
excited. This indicates that when GAM amplitude grows large enough, a three-wave interaction
process occurs: GAM couples with itself and produces two branches of daughter waves i.e. a
zero-frequency component and the second harmonic component. Next, we include the paral-
lel nonlinearity and keep other parameters the same to perform the simulation. Figure 3 (b)
shows that the parallel nonlinearity obviously suppresses the generation of the second harmonic
in large amplitude GAM simulation. This result can be easily understood from the nonlinear
gyrokinetic theory[8].

(a) (b)

Figure 3: Frequency spectrum of δn0 in large amplitude GAM simulations without parallel nonlinearity
(a) and with parallel nonlinearity (b).

Beginning from the nonlinear gyrokinetic equation[18], the GAM second harmonic gener-
ation can be written as:

(
∂

∂t
+ iωd)δF

II + δẊI · ∂

∂X
δF I + δẆ I ∂

∂W
δF I = 0, (2)
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in which, F = F (Z, t), Z = (X, W, µ) is the five-dimensional gyrocenter phase space with
X, W and µ being the gyrocenter position, the parallel velocity, and the magnetic moment,
respectively. ωd = ω̂d sin θ = −krmi(v

2
⊥/2 + v2

‖) sin θ/(eBR) is the magnetic drift associated
with the geodesic curvature, the superscripts I and II represent the primary and the second
harmonic, respectively. Here, we consider only the lowest order nonlinear effects, thus we
ignore the O(ωd/ω) ≈ O(krρi) term. For the electrostatic case, we have:

δẊI =
1

B
b̂×∇〈δφI〉, (3)

δẆ I = − e

m
b̂ · ∇〈δφI〉 − 1

B
∇× (W b̂) · ∇〈δφI〉. (4)

We note that in Eq.(2), the second term is the usual perpendicular nonlinear convective term,
and is given by:

δF II
nl,R = − e2kI

r

mΩTir

ω̂d

ωIωII
F0 cos θ(δφI

00)
2. (5)

The last term is the parallel nonlinear term. If we neglect this term, the ratio between the
amplitude of the second and primary harmonic of GAM is thus, given by:∣∣∣∣δEII

r

δEI
r

∣∣∣∣ = A
δEI

r

Bvi

; where A =
1

6SkI
rρi

. (6)

In our simulations with kI
rρi = 0.1 and S = 2.9, we get A = 0.58, which is in reasonable

agreement with the numerical fitting of the GTC simulation result A ≈ 0.95. By considering
the parallel nonlinearity term, it gives

δF II
nl,P =

e2kI
r

mΩTiR

ω̂I
d

ωIωII
F0 sin2 θ(δφI

00)
2. (7)

This term will cancel exactly the perpendicular nonlinear convective term after surface average.
So the nonlinear harmonic generation of GAM, is higher order in O(ωd/ω) ≈ O(krρi) effect
than the parallel nonlinearity term, and is thus, ignorable.

4. BAE excitation by antenna and energetic particles

In this simulation, we use a/R0 = 0.3 (a and R0 are tokamak the minor and major radius,
respectively.). Protons are used as the background ions while electron temperature is Te =
0. In this case, the Aflvén accumulation point frequency is ωBAE =

√
(7/4)Ti/(miR2

0) ≈
1.32vi/R0. The background plasma is uniform with β = 4πn0(Ti + Te)/B

2
0 = 0.0072. The

q = 2 mode rational surface locates at ε = r/R0 = 0.15 (r is the local minor radius). The
n = 4 mode is selected in the linear simulation. Since the BAE is a k‖ ≈ 0 mode, we addition-
ally apply a poloidal filter to keep only the m = nq and m = nq ± 1 harmonics to avoid the
high frequency noise. The wavelength of the BAE is kθρi = 0.09.

First, an external antenna is used to excite the BAE. Finite Larmor radius effects are ignored.
Figure 4 (a) is the time evolution of the (n = 4, m = 8) BAE mode excited with an antenna
frequency ωant = 1.67vi/R0. The mode amplitude saturates quickly due to the large damping
rate. Figure 4 (b) is the poloidal mode structure of the electrostatic potential. The m = 8
harmonic is well formed around the q = 2 mode rational surface. According to the resonant
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theory, if a damped eigenmode is excited by an antenna, the saturated intensity of the eigenmode
is given by:

A2 ∝ 1

(ω2
0 + γ2 − ω2

ant)
2 + 4γ2ω2

ant

(8)

Here, A2 is the normalized saturated intensity. ω0 and γ are the real frequency and damping rate
of the eigenmode, respectively. This method is also used in tokamak experiments to measure
the mode frequency and damping rate[19]. Figure 4 (c) is the antenna frequency scan of the
saturated BAE amplitude. The numerical fitting of the simulation results by Eq. 8 shows that
the eigen frequency and damping rate are 1.65vi/R0 and −0.36vi/R0, respectively. The ob-
served frequency is about 25% higher than ωBAE and also about 15% higher than the theoretical
prediction in Refs [20, 21, 22]. We note that these theories are based on the assumption of small
ε and large q. The large damping rate suggests that the ion Landau damping effect is strong,
because the BAE frequency is close to the thermal ion transit frequency ωt = vi/(qR0).

(a)

antenna

(c)

antenna scan

(d)

energetic particle

(b)

antenna

(e)

energetic particle

Figure 4: Time evolution (panel (a)) and poloidal mode structure (panel (b)) of the BAE excited by
antenna with ωant = 1.67vi/R0. Panel (c): saturated amplitude vs antenna frequency. The dash line is
the numerical fitting by Eq. 8. Panels (d) and (e) are the time evolution and poloidal mode structure of
the BAE excited by energetic particles. In panels (a) and (d), the black line is the real part and the red
line is the imaginary part. In panels (b) and (e), the dash circle is the q = 2 mode rational surface.
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Next, the energetic particle density gradient is used to excite the BAE. We also use protons
as the energetic particles. The maximum density gradient R/Lnf ≈ 46 is located at the q = 2
and ε = 0.15 surface. The energetic particles have a Maxwellian distribution with Tf = 16Ti

and nf = 0.01n0, respectively. In this case, the energetic particle diamagnetic frequency is
ω∗f ≈ 47vi/R0 and kθρE = 0.36. The drift-kinetic limit is taken first for simplicity and for
comparison with the gyrokinetic simulation with finite Larmor radius effects. Figure 4 (d) is
the time evolution of the BAE mode. Different from Fig. 4 (a), the energetic particle excited
BAE mode grows exponentially. The imaginary part of the mode is π/2 leading the real part in
phase, which means that this wave is a traveling wave and propagates in the fast ion diamagnetic
direction. The mode frequency and growth rate are 1.40vi/R0 and 0.25vi/R0, respectively. The
frequency is slightly lower than the antenna result due to the non-perturbative contribution by
energetic particles. The gyrokinetic simulation with finite Larmor radius effects is also carried
out with the same parameters, and the frequency and growth rate are 1.44vi/R0 and 0.19vi/R0,
respectively. The difference between the gyrokinetic and the drift-kinetic simulations for the
BAE linear growth rate is due to finite Larmor radius effects. Comparing the poloidal mode
structure of the antenna excitation case (Fig. 4 (b)) and the energetic particle excitation case
(Fig. 4 (e)), the mode structure in Fig. 4 (b) is slightly different from Fig. 4 (e), since the
energetic particles are treated non-perturbatively, which break the radial symmetry. This work
is the first gyrokinetic particle simulation of the BAE, benchmarks between gyrokinetic particle
simulation and hybrid-MHD simulation are carried out and show good agreement in BAE fre-
quency and mode structure[11].

5. Conclusion

In this work, we use gyrokinetic particle simulation to study the GAM collisionless damp-
ing, nonlinear self-interaction and BAE excitation in toroidal plasmas. Our simulation results
show that the GAM frequency is insensitive to the kinetic electrons but the GAM damping rate
is greatly enhanced. The enhancement of the GAM collisionless damping rate is due to the
resonance of trapped electron bounce motion with the GAM oscillation. This result provides a
possible explanation of the finite GAM damping rate in the high-q region of the tokamak edge,
where the contribution of the ion resonance is small.

Nonlinear self-interactions of the GAM cannot efficiently generate the second harmonic due
to a cancellation between the perpendicular convective nonlinearity and the parallel nonlinearity
for the long wavelength GAM. Other mechanisms are required to explain recent experimental
observations of the excitation of the GAM second harmonic.

In the BAE excitation simulation, the BAE frequency in antenna excitation is slightly higher
than the MHD accumulation point frequency due to the thermal ion kinetic effects. In the BAE
simulation of energetic particle excitation, the frequency is reduced and the mode structure is
modified by the non-perturbative contributions of the energetic particles. The BAE growth rate
can also be reduced by the finite Larmor radius effect.
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