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Abstract. In order to get a more complete insight into the transport processes, zonal flow dynamics and the 
nature of stochasticity in toroidal systems (helical and tokamak) we analyze nonlinear gyrokinetic Vlasov 
simulation (GKV) results for the tokamak and the standard and the inward shifted helical configurations from the 
aspect of nonlinear dynamic systems theory.  In both the tokamak and the helical case we show how 
stochasticity arises from spatiotemporal chaos (STC) . Reduction of transport in the inward shifted configuration 
with respect to the standard one is interpreted as a consequence of STC suppression while analogous 
phenomenon is noticed in the purely temporal behavior of plasma dynamics. Hence, in the helical configuration 
the inward shifted helical configuration represents means for control of spatiotemporal chaos. Layapunov 
exponents, evaluated with respect to the complete spatiotemporal dynamics , are shown to be directly related to 
transport properties. 
  
 
1. Introduction 
 
Sheared ×E B  plasma flows possessing toroidal and poloidal symmetries known as zonal 
flows, have been investigated in numerous theoretical, numerical and experimental studies as 
one of the main mechanisms regulating turbulent transport in magnetic confinement fusion 
[1], [2], [3], [4]. Also, ×E B  shear suppression of turbulence is well known to be directly 
related to various improved confinement regimes. In toroidal systems, the zonal flow is 
coupled to the geodesic acoustic mode (GAM) oscillations [5], and it is considered that the 
residual zonal flow remaining constant after Landau damping of the GAM plays an important 
role in reduction of tokamak ion temperature gradient (ITG) turbulent transport [1]. 
 
The extension of gyrokinetic theory of zonal flows driven by the ITG turbulence to helical 
systems [6] has shown that a high-level zonal flow can be maintained for a longer time by 
reducing bounce-averaged radial drift velocity of ripple trapped particles. This opened up a 
possibility for optimization of helical configuration for reduction of turbulent transport by 
enhancement of zonal flows. A survey of transport optimization methods in stellarators 
(toroidal magnetic devices) was presented in [7]. These studies have also presented arguments 
that there is a close relationship between neoclassical and anomalous transport through 
generation of zonal flows. Also, recent experiments on the Large Helical Device (LHD) have 
shown that both the neoclassical and the anomalous transport processes are reduced in the 
inward-shifted configuration [8]. The inward plasma shift decreases the radial particle drift 
but increases the unfavorable magnetic curvature which destabilizes pressure-gradient driven 
instabilities such as ITG modes. Consequently, zonal flow may be maintained for a longer 
time by reduction of bounce-averaged radial drift velocity of helical-ripple-trapped particles. 
Such a scenario implies that optimization of magnetic configuration for reduction of 
neoclassical ripple transport at the same time enhances residual zonal flows which in turn also 
lower the anomalous transport [6], [7], [9], [10]. 
 



The nonlinear gyrokinetic simulation yields results for turbulent ion thermal diffusivity iχ  
whose temporal behavior was interpreted as a global indicator of transport properties in two 
configurations. In the inward-shifted configuration, the ion thermal diffusivity grows faster in 
the initial state while displaying lower average value at the later time accompanied with 
stronger zonal flows and causal relationship was deduced between these two phenomena [11], 
[12].   
In order to get a more complete insight into the transport processes and zonal flow dynamics 
in helical (standard and the inward shifted configurations) and tokamak systems nonlinear 
gyrokinetic Vlasov simulation (GKV) results are analyzed from the aspect of nonlinear 
dynamic systems theory [13].  
 
 
2. Gyrokinetic Model for Helical System 
 
The basic formulae for describing the drift wave turbulence in magnetically-confined plasmas 
are given by the gyrokinetic equations, where time-evolution of the one-body distribution 
function is described as a nonlinear partial differential equation defined on the five-
dimensional phase space. In the gyrokinetics, the finite gyro-radius effect is introduced while 
the gyro-phase averaging eliminates the fast time-scale phenomena associated with gyro-
motions. The nonlinear gyrokinetic equation of the perturbed gyro-center distribution function 

fδ in the low- β  (electrostatic) limit, 
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is numerically solved in the GKV code. Here, the parallel velocity v∣∣  and the magnetic 

moment μ are chosen as velocity-space coordinates, where 2 / 2 ivμ ⊥≡ Ω  with the ion 
cyclotron frequency /i ieB m cΩ = . In the expression for ,iΩ im  is the ion mass and v⊥  is 
the perpendicular velocity. Each term on the left-hand-side (l.h.s.) of Eq.(2.1) , except for the 
time derivative one, represents advection of fδ along gyrocenter orbits in the phase space. 
The background distribution is approximated by the Maxwellian MF . The collision term is 
represented by ( )C fδ . The last term on the l.h.s. indicates the nonlinear electric ×E B  
drift term causing turbulent transport where {,}  denotes the Poisson brackets and Φ  
denotes elctrostatic potential averaged over the gyromotion. Collective motions of ions 
described by gyrokinetic equation change the fluctuating electric field. The perturbed ion 
distribution function fδ is substituted into the quasi-neutrality condition of space charge for 
calculation of the electrostatic potential fluctuations where the adiabatic electron response is 
assumed (except for the zonal flow component). Toroidal flux tube coordinates (x,y,z) are 
employed where y and z are defined in terms of the poloidal angle ,θ  toroidal angle ζ
and the safety factor q as 0 0( / )[ ( ) ]y r q q r θ ζ= −  and z θ= . Flux-surface label r is defined 
by toroidal flux 2

0T B rπΨ =  while radial coordinate is 0x r r= − 0( )r  where 0r
`represents minor radius at which local background parameters are evaluated and 0 0( )q q r= . 



Effects of the helical confinement field are introduced through variation of the magnetic field 
strength | |B  along the field line, such that 
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where ( )l rε  denotes amplitude of a helical component with the poloidal period number l . 
The major helical field of the LHD is given by 2L =  and 10M =  where L and M mean the 
poloidal and toroidal period numbers of the confinement field, respectively. The main helical 
field is Lε  while the side-band components and the average normal curvatures are given by 

1L−ε , 1L+ε  and 00 00 /d dr′ =ε ε , respectively. For the tokamak configuration 0l =ε . The field-
line label is denoted by α and is set to 0 in Eq. (1.2) since both the linear ITG instability and 
the zonal-flow response depend weakly upon α . Equation (2.2) is substituted into the 
magnetic drift dv  and the mirror force term (the last term in the square brackets on the l.h.s. 
of Eq.(2.1). A more detailed account of the GKV simulation model may be found in Ref. [11]. 
 
 
3. Simulation results 
 
In the present study, the nonlinear GKV simulation implemented with the specified magnetic 
field parameters successfully confirms generation of large zonal flows enough to reduce the 
ion heat transport in the inward-shifted plasma. The obtained results are consistent with an 
experimental observation of better confinement in the inward-shifted LHD plasma [8]. Color 
contours of the flux-surface averaged electrostatic potential φ  in the steady ITG turbulence 
are presented in Fig. 1. The ballooning-type mode structure of the ITG instability observed in 
the linear growth phase is destroyed in the latter turbulent state by the self-generated zonal 
flows. For the inward-shifted configuration shown in Fig. 1 (right), we see clear structures of 
poloidal zonal flows in the potential profile mapped on the poloidal cross section, while more 
isotropic vortices are observed in the standard case, also seen in this Figure (left). 
 
 

 
 
 
Fig. 1 Color contours of the electrostatic potential φ  of the zonal flow and the ITG turbulence 
obtained by the GKV simulation for the standard (left) and the inward-shifted case (right) LHD 
configuration at 120 /n tit L v= .Values of electrostatic potential are normalized to /n e ie L Tφ ρ . 
 
 



 
Spatiotemporal profiles of the zonal flows in two configurations and in the tokamak case are 
shown in Fig. 2 with spatial coordinate corresponding to the radial position. Zonal flow 
potential was generated at 2500 time points (from 60 250 / )n tit to L v= , and at 130 radial 
positions. Peak amplitude of the time-averaged zonal-flow potential for the inward-shifted 
plasma is about six times larger than the largest amplitude of the standard case. 
 
 

 
 
 
Fig. 2 Spatiotemporal profiles of the electrostatic potential φ of the zonal flow obtained by the GKV 
simulation for the standard LHD (left), the inward shifted LHD (center) and the tokamak 
configuration (right) . Normalization is the same as in Fig. 1. 
 
A brief inspection of the spatiotemporal patterns for two configurations reveals more spatially 
ordered and more energetic coherent structures in the inward-shifted case while in temporal 
domain this distinction is somewhat less pronounced. 
 
 
4. Analysis of spatiotemporal plasma dynamics 
 
The dynamics ( , )x tφ  is decomposed in terms of spatial and temporal eigenmodes  
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where the eigenvalues nA are ordered in a decreasing sequence 0 1 ... 0A A≥ ≥ > .  
Eigenfunctions ( )n xϕ  are eigenfunctions of the spatial two-point correlation operator U U∗ , 
where U ∗  represents the complex conjugate of U, while ( )n tψ are eigenfunctions of the 
temporal two-point correlation operator UU ∗ . The kernel of U is the spatiotemporal 
dynamics of ( , )x tφ itself. The eigenvalues of these two operators are equal to 2

nA . The 
method [14],[15] allows immediate evaluation of the number of degrees of freedom of the 
spatiotemporal dynamics, which is defined as the smallest number of modes necessary to 
describe ( , )x tφ and is also referred to as the global dimension of ( , )x tφ . Since the spectral 
decomposition of U is generated directly from the dynamic system ( , )x tφ  the 
eigenfunctions and the eigenvalues of the operator U contain information on the attractor of 
the dynamics and the number of nonzero eigenvalues of the operator U represents the 
dimension of the smallest linear subspace containing the attractor. The global energy of the 



spatiotemporal signal ( , )x tφ is expressed as the sum of energies of dominant coherent 
structures which correspond to nonzero eigenvalues, i.e. 
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 .  
In Fig. 3 the eigenvalues 2

nA  (corresponding to the energy content of modes numbered from 
1 to N) are presented for the helical configurations (standard (left) and inward shifted (center)) 
and for the tokamak (right). It is evident that in the standard configuration the energy is 
distributed among eight dominant modes (zonal flows) with almost monotonic decrease of 
energy with the mode index. For the inward shifted case most of the energy is contained in the 
 

   
 
Fig. 3 Non-zero eigenvalues of the bi-orthogonal decomposition for the standard helical (left), the 
inward shifted configuration (center) and the tokamak (right). i denotes sequential number of an 
eigenvalue. 
 
first two modes (68%) with the first mode carrying 43% of the total energy. The total energy 
of the inward shifted configuration is 2.5 times larger than the total energy of the standard 
configuration and it is striking that the main difference between the energy content of two 
configurations comes from the large energy accumulation in the first two modes of the inward 
shifted case.  Employing the criterion presented in [16] it may be inferred that the global 
dimension the zonal flow dynamics in the standard configuration is 8, in the inward shifted 
case 4, and in this particular tokamak case 3. The low dimensionality of the inward shifted 
configuration dynamics is remarkable and shows that the parameters modelling the helical 
configuration, namely the safety factor, the magnetic shear parameter, the inverse aspect ratio, 
the field strength and their radial derivatives, act as a set of control parameters for 
spatiotemporal chaos suppression and in general for control of chaos. In Figs. 4 and 5 the first 
four spatial eigenfunctions of the spatiotemporal dynamics in all cases considered here are 
presented.  
 

 
 
Fig. 4 First four eigenfunctions of the bi-orthogonal decomposition for the standard configuration 
(left), the inward shifted configuration (right) and the tokamak case (below). 



 
 

 
Fig. 5 First four eigenfunctions of the bi-orthogonal decomposition for the  
 
It may be immediately noticed that the modes of the inward shifted configuration are more 
regular while even modes 2ψ  and 4ψ  are almost sinusoidal with an evident symmetry 
around the central radial position (middle of the spatial axis). In order to gain deeper 
understanding of spatiotemporal dynamics we extract the Lyapunov spectrum (LS) for 

( , )x tφ  where LS is the set of Lyapunov exponents { } 1

N
i i
λ

=
 arranged in decreasing order. The 

estimation is performed using a pure spatial reconstruction with increasing spatial embedding 
dimension sd . The spectrum is then used to obtain the dimension of the chaotic attractor (the 
number of effective degrees of freedom) which is given by the so called Lyapunov dimension 
[17] 
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whole system. One may also determine the Kolmogorov-Sinai (KS) entropy h from the LS 
using the following approximation [18] 
 
 ,ih λ+= ∑  (4.4) 
 
where the summation is over positive Lyapunov exponents iλ

+ . The KS entropy quantifies 
the mean rate of information generation in a system (the mean rate of uncertainty increase due 
to infinitesimal perturbations).  For spatiotemporal chaotic systems both LD and h are 
extensive quantities (i.e. LD and h increase linearly with the system size). In Fig. 5 the sum of 

Lyapunov exponents 
1

i

k
k
λ

=
∑ is presented as a function of I for various sizes of the system. 

From this representation the Lyapunov dimension may be readily obtained from the 
intersection with the horizontal axis and the KS entropy is determined from the maximum of 
the curve. It may be easily noticed that both the Lyapunov dimension and the KS entropy of 
the standard shifted configuration (left, blue curves) are always greater than the LD and h of 
the inward shifted one (red curves). A closer inspection of this Figure reveals that both LD
and h are extensive quantities. Hence, the standard configuration is more chaotic with the 
greater number of effective degrees of freedom and the mean rate of information production is 



higher in the standard configuration. A direct consequence of this property has a powerful 
impact on transport properties and points to the deep relationship between Lyapunov 
exponents and transport properties of confined plasma system  
 

 
 
Fig. 5 The sum of Lyapunov exponents as a function of the system size sd  for the helical 
configuration (left) and the tokamak (right). For the helical configuration standard configuration 
dynamics is shown in (blue) and inward shifted dynamics in (red). For the tokamak blue and red 
colors denote clockwise and counterclockwise spatial directions from 0φ = . The Lyapunov dimension 

LD  and the Kolmogorov-Sinai entropy h may be estimated from the diagrams. 
 
Further comparison between the dynamics solely in the temporal domain may be obtained by 
using the recurrence plot (RP) analysis of time series [19], [20] which offers remarkable 
visual difference between temporal patterns. For this purpose we use temporal variations of 
electrostatic potential at the central spatial (radial) position i.e. 0φ = . Using standard 
methods to embed the time series we obtain the recurrence plots shown in Fig. 6 for the 
standard (left), the inward shifted (center) and tokamak configurations respectively 1 . 
Recurrence plot for the standard configuration reveals irregular diagonal areas (lines) parallel 
to the main diagonal with sparsely distributed horizontal and vertical areas (lines) which 
indicate deterministic chaos. In contrast RP of the inward shifted configuration displays 
dominant horizontal and vertical areas which mark time periods during which state does not 
change or changes very slowly, a sign of lesser chaotic state (intermittency). 
  

 
 
Fig. 6 Recurrence plots of time series ( , 0)t xφ = \recorded at the central radial position. Standard 
configuration case is on the left, the inward shifted in the center and tokamak case on the right.  
 

                                                 
1 Recurrence plots were generated using Eugene Kononov’s Visual Recurrence Analysis software 
(www.myjavaserver.com/~nonlinear/vra) 



Intermittency is also dominant dynamics in the tokamak configuration. The time series of 
( , 0)t xφ =  for the standard configuration has two positive Lyapunov exponents indicating 

hyper chaos while for the inward shifted and the tokamak case only one. 
 
5. Conclusion 
 
The nonlinear GKV simulation substantiates generation of zonal flows capable of reducing 
ion heat transport in the inward-shifted configuration of a helical system. The nonlinear GKV 
equation for the perturbed ion gyrokinetic distribution function in the low- β  electrostatic 
limit is solved as a partial differential equation defined in the five dimensional phase space. 
Simulation results reveal enhanced zonal flow generation and larger amplitude of these 
coherent structures in the inward-shifted configuration accompanied by lower ion thermal 
diffusivity. An analysis of electrostatic potential dynamics performed with the use of methods 
of nonlinear dynamics systems theory and the theory of chaos shows that both the helical 
(standard and the inward-shifted configurations) and the tokamak exhibit extensive properties 
characteristic of spatiotemporal chaos. A considerable reduction of spatiotemporal chaos is 
evident in the inward-shifted configuration accompanied by generation of more energetic 
zonal flows in comparison with the standard case. Since the set of parameters comprising of 
the safety factor, the magnetic shear parameter, the inverse aspect ratio, the magnetic field 
strength and their radial derivatives models helical configuration and hence controls chaotic 
dynamics, insight into their interplay in the chaos control process may open up new 
possibilities for efficient control of spatiotemporal chaos.  
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