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1.Introduction  
 

 One of the most effective approaches to linear analysis of the evolution of plasma 
turbulence in shear flows is the Kelvins method of shearing modes or so-called non-modal 
approach. This method is equally reliable for the treatment of the plasma flows with arbitrary 
magnitude of the velocity shear[1], for spatially homogeneous or inhomogeneous velocity 
shear[2], for flows with time dependent velocity shear (for which it is unreasonable to apply 
the spectral expansion in time)[3]. The exceptional advantage of the non-modal approach is a 
possibility to perform the analysis of the plasma evolution on any finite time domain. This 
method appears to be very effective for the investigations of the sequences of the evolutionary 
processes in shear flows (see, for example Ref.[4]), which may incorporate different time 
scales and may appear at different stages of the temporal evolution. The essence of this 
approach, which originally was developed for fluid equations by Kelvin for flows with 
homogeneous velocity shear, consists in transforming the independent spatial variables from 
the laboratory frame to a frame convected with shear flow and studying the temporal 
evolution of the spatial Fourier modes of perturbation without any spectral expansions in time 
([1-4] and references therein). The transformation to the coordinates convected with shear 
flow eliminates the explicit spatial dependence, related to shear flow, from the convective 
derivative in governing fluid equations. This transformation not only simplifies governing 
equations, but it is principally indispensable. The temporal evolution of the separate spatial 
Fourier harmonic with definite wave numbers may be considered only with convective 
coordinates; it is in contrast to the laboratory set of reference, in which spatial Fourier 
harmonics are coupled due to velocity shear. 

Kinetic effects, such as finite Larmor radius effects, effects of Landau and cyclotron 
damping and resulted numerous kinetic instabilities, which, naturally, do not involved into 
fluid description of plasma shear flows, require the development of the kinetic description of 
the plasma shear flows, which has the Kelvins method of shearing modes or so-called non-
modal approach as its foundation. 

The investigation, results of which are presented in this report, have its objects 
1)nonlinear renormalized non-modal fluid theory of drift turbulence in the case of the plasma 
flows with a moderate velocity shear (of the order of or greater than the instability growth 
rate, but less than the drift waves frequency), 2)the development of the non-modal approach 
to linear kinetic theory of plasma shear flows and its application to the investigation of the 
temporal evolution of the kinetic drift instability and 3) development of the non-modal 
renormalized kinetic theory of drift turbulence in plasma shear flows.  
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2. Renormalized Hydrodynamic Theory for Drift Turbulence in Plasma Shear 
Flows  

 
We consider one of the simplest models describing drift turbulence at the edge of a 

magnetic confinement device, the Hasegawa-Wakatani equations for the dimensionless 
density = / en n n  and potential = / ee T   perturbations ( en  is the electron background 

density, eT  is the electron temperature),  
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 0 0=x V x yV e  is the velocity of the sheared flow, 2
0= /ea T n e 


, 


 is the resistivity parallel 

to homogeneous magnetic field B z , s  is the ion Larmor radius at electron temperature eT , 

= /de e nv cT eBL  is the diamagnetic drift velocity,  1
0= ln /n eL d n x dx  . With new spatial 

variables ,i ix y , determined by the transform [1]  

 0= , = , = , = ,i it t x x y y V xt z z  (3) 

Eqs. (1) and (2) have a form  
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with time dependent Laplacian  
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Transformed system (4)-(6) has two remarkable properties: it does not contain the linear 
spatially inhomogeneous convection terms and it contains the E B  non-linear convective 
derivatives in a form similar to the one in a plasma without any flows. The spatially 
homogeneous system (4), (5) may be Fourier transformed over variables , ,i ix y z  with 

electrostatic potential  

    , , , = , , , .
ik x ik y ik zx i y i z

i i x y z x y zx y z t dk dk dk k k k t e
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 For the perturbations with < 1y sk  , Eqs.(4) -(6) with transformation (3) introduce two 

characteristic times,   1

1 0=t V
  and   1

2 0= y st V k


  , conditioned by flow shear. With 

convective variables in times 1>t t , but less than 2t , the perturbations have the frequency and 

growth rate of the ordinary modal drift resistive instability without spatially inhomogeneous 
Doppler shift. The governing equations (4) – (6) on that time interval do not display any 
effects of the velocity shear. In the laboratory frame of reference spatial Fourier modes (7) are 
observed as sheared modes with time dependent component of the wave number 

0=xk k lv t   directed along the velocity shear, and therefore are quite different from the 

normal mode assumption,  
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Solution (8) has a normal mode form only for a limited time, for which 0 1V t  . When 

0V    non-modal effect becomes pronounced at times 1t    (  is the modal instability 

growth rate). The comprehensive investigation in linear approximation the temporal evolution 
of the separate spatial Fourier mode of the electrostatic potential  , , ,x z zk k k t , was 

performed on the base of system (4), (5) in Ref.[1] in first. The renormalized nonlinear theory 
of the system (4), (5) was developed in first in Ref.[3]. The theory developed in Ref.[3] bases 
on the application the nonlinearly distorted coordinates, 1= ix   , 1= iy    instead of 

coordinates ,i ix y . The quantities 1  and 1  are determined by nonlinear relations  
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 With variables ,   the quadratic convective nonlinearity in Eqs.(4) and (5) becomes of 
the higher order. Omitting these nonlinear terms we come to linearized system (4), (5) with 
solution in variables ix  and iy  of a form [3]  
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where wave numbers ,x yk k  are conjugate now to coordinates  ,  , respectively,  , ,0x yk k  

is the initial data for perturbed potential, and  1, ,x yg k k t  is unstable linear solution of 

Eqs.(4), (5) for electrostatic potential. Eq.(10) is in fact a nonlinear integral equation for 
potential  , in which the effect of the total Fourier spectrum on any separate Fourier 
harmonic is accounted for. This form of solution, however, appears very useful for the 
analysis of the correlation properties of the nonlinear solutions to Hasegawa-Wakatani system 
and for the development of the approximate renormalized solutions to Hasegawa-Wakatani 
system, which accounted for the effect of the turbulent motions of plasma on the saturation of 
the drift-resistive instability. Assuming that the displacements  1 t ,  1 t  obey the Gaussian 

statistics with mean zero, the renormalized form of the potential (10), in which the average 
effect of the random convection is accounted for, was obtained in Ref.[3],  
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where  , ,x yC k k t  is determined by the integral equation  
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and      2 2 2 ,
, , = , ,0

k k tx y
x y x yk k t k k e


  . In contrast to the case of plasma without shear 

flow, for which the steady state establishes on the level determined by the equation 

   , = , ,x y x yk k C k k t , that level is transient for plasma shear flows and holds only for a 

limited time 2t t . The time evolution of the system (4), (5) at times 2t t  characterizes by 

the non-modal effect of the enhanced dispersion, due to which the potential   has a strongly 

non-modal form[1] with     2

0, , ,x y z y sg k k k t k V t


 , for which Markovian approximation is 

not valid. Obtained results clearly show that the nonlinearity of the Hasegawa-Wakatani 
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system of equations in variables ix  and iy , with which frequency and growth rate are 

determined without spatially inhomogeneous Doppler shift and wave number is time 
independent, does not display effect of "the enhanced decorrelations provided by flow shear", 
which was considered in Refs.[5,6] as a main effect of the suppression of the drift turbulence 
in shear flows. As it follows from [5,6], the effect of the enhanced decorrelation is completely 
conditioned by convective derivative term 0 ( / )V x y    in Eqs.(1) and (2) which is responsible 

for the Doppler shift. The effect of the enhanced dispersion of plasma displacements displays 
the variance of the plasma displacements resulted from the modes of the ordinary modal form, 
but observed in the laboratory frame. 

 
3. Non-modal Approach to Kinetic Theory of Plasma Shear Flows  
 
The results presented above display the effectiveness of the non-modal approach in the 

analysis of the linear and non-linear evolution of the plasma turbulence in shear flows. In this 
section we extend the non-modal approach onto kinetic theory of plasma shear flows. The 
transformation of spatial coordinates and velocity in Vlasov equation for the distribution 
function F  to convective coordinates,  
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(where 0 0= /V dV dx , and it was assumed that shear flow appears at time = 0t  ) excludes the 

spatial inhomogeneity introduced by shear flow from Vlasov equation,  
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With leading center and velocity space coordinates,  
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which correspond to more and more stretched with time along the shear flow Larmor orbit, 
the equation for the perturbation f  of the equilibrium distribution function has a simple 

form,  
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where 0= 1 / > 0cV    . It is interesting to note, that the equilibrium distribution function 

0F  , which in laboratory frame contains the spatial inhomogeneity resulted from electric field 

 0E r , does not contain such inhomogeneity in coordinates (15),(16). In what follows we 

consider the equilibrium distribution function 0iF  as a Maxwellian,  
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assuming the dependence on coordinate X  of the density of plasma shear flow species. The 
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spatially homogeneous, but time dependent, Eqs.(14) and (17) may be Fourier transformed 
over the variables , ,x y z    with conjugate wave numbers xk , yk  and zk  and be traced upon 

the temporal evolution of the separate spatial Fourier mode of the perturbations of the 
distribution function, f  and of the electrostatic potential,  , tk . On this way we present 

the potential  ,r t  at the form  

      , , , = , , , = , , ,
ik x ik y ik zx y z

x y z x y z x y zx y z t k k k t e dk dk dk k k k t
 

   
      

 
    exp sin ,x y z c x y z

c

k t v
ik X ik Y ik z i t t dk dk dk 
 

     
  

  
 

   
 

 (19) 

where    22 2
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calculated easily for any values of the velocity shear rate 0V  . Using that solution in the 
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which appears to be convenient and transparent for the analysis,  
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Note, that  0 0, = 1P t t . The secular growth of the wavenumber  k t  in Eq.(20) is the key 

element in the proper treatment of the long-time evolution of the perturbations in shear flow. 

Using the quasineutrality approximation with   2 2 2 1z Dk t k    , and averaging this 

equation over the time 1
cit  , we obtain from Eq.(20) the equation, which is relevant for 

the analysis of the evolution of low frequency drift perturbations in shear flow,  
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where      0, = ,t t t t  k k ,  0t t   is equal to zero for 0<t t  and equal to unity for 

0t t , and = /i eT T . We have obtained by successive approximations approximate solutions 

to Eq.(22) for long wavelength,  0 < 1ik t  , perturbations in two limited cases without 

application the spectral transformation over time: in the case of the weak velocity shear, or a 
small time, for which condition 0| | 1V t   is met, and solution for the nonmodal stage, which 

is settled at 0 1V t  . The weak ion Landau damping, for which 
 21 2 2

021 1
k v t tz Tie

 
  , is 

assumed. 
At the case 0| | 1V t  , we can omit the time dependence of the wave number  tk . In 

that case Eq.(22) has an ordinary modal form.  
       , = expt C i t t  k k k   (23) 

where   tk  and  k  are the frequency and growth rate of the modal kinetic drift 

instability developed due to inverse electron Landau damping of drift waves. Now consider 

the time interval for which   11
0 0( ) =S iV t t V k


    . If < 1ik  at time = 0t , at which 

the shear flow emerged, we will get   < 1ik t   everywhere on that interval. By using the 

approximation  

          1 2 2 2
12 2

0 1

k t k ti
iI k t k t e

  
 


  

        22 2 2 2 2
0 1 0 1

1
,

2i x y i y ib k k V t t k V t t t
        
 

   (24) 

in Eq.(22), where 2 2=i ia k   and 2 2= 1i ib k  , we obtain the non-modal solution for the 

potential of drift-type perturbations, modified by the non-modal velocity shear driven effects, 
in the form  

      
2 2

0 2 2

1
, = exp 1 .

3 2i i s i s

t t
t i t t

a b t a t

  
       

  
k k k

   (25) 

As it follows from Eq.(25) these effects, which reveals in non-modal reduction of the 
frequency and growth rate, are negligible at st t  and become dominant at st t . Note, that 

for 2 2
ik   the time 1/2

i sa t  is approximately equal to time   1

2 0= st V k


   of the transition to 

strongly non-modal regime in the fluid theory of the drift turbulence of the plasma shear flow.   
 
4. Renormalized Kinetic Theory for Drift Turbulence in Plasma Shear Flows 
 
By application the methodology of the renormalization of the Vlasov equation, 

developed in Ref.[7], to plasma shear flow across the magnetic field, the renormalized version 
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of the Eq.(17) is obtained, in which effect of nonlinear breakdown of phase of the potential 
(19) due to turbulent scattering of ions in electrostatic turbulence was accounted for. We find, 

that for the times   1

0<t V
  the main effect, which determines the nonlinear scattering of ions 

by long wavelength drift turbulence with < 1ik  is the scattering of the leading center 

coordinates, X  and Y . The non-modal effects are negligible at this time. At times 

  1

0>t V
  right the non-modal effects determine the nonlinear evolution of drift turbulence 

with dominant breakdown of phase of the potential due to scattering of the phase angle   in 

velocity space. For times   1

0 < < sV t t
  and for times > st t  we have, respectively  

    3 2

0 0/ 1, / 1.i x y i i xk k X k V t k k X V t             (26) 

Applying the procedure of the solution of the integral equation (22) to the renormalized 

version of that equation, we obtain for   1

0 < < sV t t
  the renormalized solution (23) in the 

form  

        
2

0 1 12 2
0

1
, = exp 1 , ,

3 2

t

i i s i s

t t
t i t t C t dt

a b t a t

    
          

    
k k k k

  (27) 

where  ,C k t  is determined by the equation  

          

6 42
2 102 2

1 1 12 2
1

, = , , .
8

y
y i

kV tc
C t k d t C t

B


k k k k

k
 


 (28) 

If we omit linear non-modal terms in Eq.(27), the condition of the balance of the linear 
modal growth of the kinetic drift instability and non-linear non-modal dumping is determined 
by the equation    = ,k C k t . By using this equation in Eq.(28), we obtain the equation, 

which determines the time, at which that balance occurs,  

 
 

 
     

42
2 12 2

1 1 16 2 2
10

= , .
8

y
y i

kc
k d t

BV t 
k

k k k
k


  


 (29) 

The effect of the shear flow reveals in the reducing with time as   6

0V t
  the magnitude 

of the growth rate in the left part of the balance equation (29). That causes rapid asselerated 
suppression of the drift turbulence. This balance does not correspond to the steady state for 
drift turbulence in shear flow. The evolution of drift turbulence continues on times st t . It 

follows by strongly non-modal way, where Markovian approximation, which is appropriate 
for the solution Eq.(23) when the growth rate and non-modal terms are small with respect to 
the frequency  k , ceases be valid.  

 
 5. Summary  
 
 The results presented in this report prove that any "universal rules" or "paradigms", that 

thoroughly determined the effect of the suppression of the turbulence by shear flow, are 
absent. The suppression of turbulence by shear flows is a mode dependent process, which, as 
a rule, includes the sequence of different non-modal linear and non-linear processes with 
different time scales for different parts of the spectrum of the unstable waves. The non-modal 
analysis of the resistive drift and kinetic (universal) drift instabilities reveals that linear non-

modal effects lead to the decreasing the frequency and growth rate at time   1

2 0= y st t V k


   
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and lead to rapid non-modal suppression of turbulence at time   1

2 0> = y st t V k


  . Because of 

the secular growth of the component  xk t  of the wave number along the velocity shear, the 

results obtained above on the base of fluid equations have a limited validity in the 
investigations of long time evolution of the turbulence in plasma shear flows and the analysis 
on the base of the non-modal kinetic theory is necessary. The time dependence of the 
wavenumber  k t  becomes the key element in the proper kinetic treatment of the long-time 

evolution of the perturbations in shear flow. In such kinetic analysis the nonlinear non-modal 
turbulent scattering of the phase angle of ion Larmor orbit may be the dominant effect, which 
determines rapid suppression of the drift turbulence by shear flow. 

The "enhanced decorrelation by flow shear" considered in Refs.[5,6] have nothing in 
common with "enhanced suppression" of turbulence in shear flows (see also Ref.[3] for more 
extension discussion of that conclusion). The "universal rule 0V   " can't be considered as a 

condition for the suppression of turbulence by shear flow. Under that condition the 
perturbation, considered in convected set as a separate spatial Fourier mode with definite 
frequency and growth rate becomes observed in laboratory set in time 1t   as a sheared 

mode with time dependent wave number. Only for the perturbations with 1y ik    that time 

coincides with time 2t , at which strong nonmodal suppression of the drift turbulence occurs.  

 
Acknowledgements 
V.S.M. acknowledge the Erasmus Mundus Foundation for partial financial support this 
research. 
 
[1] Mikhailenko, V.S., Mikhailenko, V.V., and Stepanov, K.N., Physics of Plasmas, 7, 94 
(2000)  
[2] Mikhailenko, V.S., Mikhailenko, V.V., Stepanov, K.N., and Azarenkov, N.A., Physics of 
Plasmas, 15, 072102 (2008)  
[3] Mikhailenko, V.S., Mikhailenko, V.V., and Stepanov, K.N., Plasma Phys Controlled 
Fusion, 52, 055007, (2010)  
[4] Mikhailenko, V.S., Mikhailenko, V.V., Heyn, M.F., Mahajan, S.M., Physical Review E 
66, 066409 (2002)  
[5] Biglari, H., Diamond, P.H., Terry, P.W., Phys.Fluids, B2, 1, (1990)  
[6] Shaing, K.C., Crume, E.C., Houlberg, W., Phys.Fluids B 2, 1492 (1990)  
[7] Mikhailenko, V.S., Mikhailenko, V.V., Stepanov, K.N., and Azarenkov, N.A., Physics of 
Plasmas, 16, 012305 (2009)  


